Cargando…
Out-of-field dose in stereotactic radiotherapy for paediatric patients
BACKGROUND AND PURPOSE: Stereotactic radiotherapy combines image guidance and high precision delivery with small fields to deliver high doses per fraction in short treatment courses. In preparation for extension of these treatment techniques to paediatric patients we characterised and compared doses...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8295843/ https://www.ncbi.nlm.nih.gov/pubmed/34307913 http://dx.doi.org/10.1016/j.phro.2021.05.006 |
_version_ | 1783725504807829504 |
---|---|
author | Garrett, Lachlan Hardcastle, Nicholas Yeo, Adam Lonski, Peta Franich, Rick Kron, Tomas |
author_facet | Garrett, Lachlan Hardcastle, Nicholas Yeo, Adam Lonski, Peta Franich, Rick Kron, Tomas |
author_sort | Garrett, Lachlan |
collection | PubMed |
description | BACKGROUND AND PURPOSE: Stereotactic radiotherapy combines image guidance and high precision delivery with small fields to deliver high doses per fraction in short treatment courses. In preparation for extension of these treatment techniques to paediatric patients we characterised and compared doses out-of-field in a paediatric anthropomorphic phantom for small flattened and flattening filter free (FFF) photon beams. METHOD AND MATERIALS: Dose measurements were taken in several organs and structures outside the primary field in an anthropomorphic phantom of a 5 year old child (CIRS) using thermoluminescence dosimetry (LiF:Mg,Cu,P). Out-of-field doses from a medical linear accelerator were assessed for 6 MV flattened and FFF beams of field sizes between 2 × 2 and 10 × 10 cm(2). RESULTS: FFF beams resulted in reduced out-of-field doses for all field sizes when compared to flattened beams. Doses for FFF and flattened beams converged for all field sizes at larger distances (>40 cm) from the central axis as leakage becomes the primary source of out-of-field dose. Rotating the collimator to place the MLC bank in the longitudinal axis of the patient was shown to reduce the peripheral doses measured by up to 50% in Varian linear accelerators. CONCLUSION: Minimising out-of-field doses by using FFF beams and aligning the couch and collimator to provide tertiary shielding demonstrated advantages of small field, FFF treatments in a paediatric setting. |
format | Online Article Text |
id | pubmed-8295843 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-82958432021-07-23 Out-of-field dose in stereotactic radiotherapy for paediatric patients Garrett, Lachlan Hardcastle, Nicholas Yeo, Adam Lonski, Peta Franich, Rick Kron, Tomas Phys Imaging Radiat Oncol Original Research Article BACKGROUND AND PURPOSE: Stereotactic radiotherapy combines image guidance and high precision delivery with small fields to deliver high doses per fraction in short treatment courses. In preparation for extension of these treatment techniques to paediatric patients we characterised and compared doses out-of-field in a paediatric anthropomorphic phantom for small flattened and flattening filter free (FFF) photon beams. METHOD AND MATERIALS: Dose measurements were taken in several organs and structures outside the primary field in an anthropomorphic phantom of a 5 year old child (CIRS) using thermoluminescence dosimetry (LiF:Mg,Cu,P). Out-of-field doses from a medical linear accelerator were assessed for 6 MV flattened and FFF beams of field sizes between 2 × 2 and 10 × 10 cm(2). RESULTS: FFF beams resulted in reduced out-of-field doses for all field sizes when compared to flattened beams. Doses for FFF and flattened beams converged for all field sizes at larger distances (>40 cm) from the central axis as leakage becomes the primary source of out-of-field dose. Rotating the collimator to place the MLC bank in the longitudinal axis of the patient was shown to reduce the peripheral doses measured by up to 50% in Varian linear accelerators. CONCLUSION: Minimising out-of-field doses by using FFF beams and aligning the couch and collimator to provide tertiary shielding demonstrated advantages of small field, FFF treatments in a paediatric setting. Elsevier 2021-06-04 /pmc/articles/PMC8295843/ /pubmed/34307913 http://dx.doi.org/10.1016/j.phro.2021.05.006 Text en © 2021 The Authors. Published by Elsevier B.V. on behalf of European Society of Radiotherapy & Oncology. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Original Research Article Garrett, Lachlan Hardcastle, Nicholas Yeo, Adam Lonski, Peta Franich, Rick Kron, Tomas Out-of-field dose in stereotactic radiotherapy for paediatric patients |
title | Out-of-field dose in stereotactic radiotherapy for paediatric patients |
title_full | Out-of-field dose in stereotactic radiotherapy for paediatric patients |
title_fullStr | Out-of-field dose in stereotactic radiotherapy for paediatric patients |
title_full_unstemmed | Out-of-field dose in stereotactic radiotherapy for paediatric patients |
title_short | Out-of-field dose in stereotactic radiotherapy for paediatric patients |
title_sort | out-of-field dose in stereotactic radiotherapy for paediatric patients |
topic | Original Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8295843/ https://www.ncbi.nlm.nih.gov/pubmed/34307913 http://dx.doi.org/10.1016/j.phro.2021.05.006 |
work_keys_str_mv | AT garrettlachlan outoffielddoseinstereotacticradiotherapyforpaediatricpatients AT hardcastlenicholas outoffielddoseinstereotacticradiotherapyforpaediatricpatients AT yeoadam outoffielddoseinstereotacticradiotherapyforpaediatricpatients AT lonskipeta outoffielddoseinstereotacticradiotherapyforpaediatricpatients AT franichrick outoffielddoseinstereotacticradiotherapyforpaediatricpatients AT krontomas outoffielddoseinstereotacticradiotherapyforpaediatricpatients |