Cargando…
Oropharyngeal primary tumor segmentation for radiotherapy planning on magnetic resonance imaging using deep learning
BACKGROUND AND PURPOSE: Segmentation of oropharyngeal squamous cell carcinoma (OPSCC) is needed for radiotherapy planning. We aimed to segment the primary tumor for OPSCC on MRI using convolutional neural networks (CNNs). We investigated the effect of multiple MRI sequences as input and we proposed...
Autores principales: | Rodríguez Outeiral, Roque, Bos, Paula, Al-Mamgani, Abrahim, Jasperse, Bas, Simões, Rita, van der Heide, Uulke A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8295848/ https://www.ncbi.nlm.nih.gov/pubmed/34307917 http://dx.doi.org/10.1016/j.phro.2021.06.005 |
Ejemplares similares
-
Strategies for tackling the class imbalance problem of oropharyngeal primary tumor segmentation on magnetic resonance imaging
por: Rodríguez Outeiral, Roque, et al.
Publicado: (2022) -
Deep learning for segmentation of the cervical cancer gross tumor volume on magnetic resonance imaging for brachytherapy
por: Rodríguez Outeiral, Roque, et al.
Publicado: (2023) -
Clinical variables and magnetic resonance imaging‐based radiomics predict human papillomavirus status of oropharyngeal cancer
por: Bos, Paula, et al.
Publicado: (2020) -
A network score-based metric to optimize the quality assurance of automatic radiotherapy target segmentations
por: Rodríguez Outeiral, Roque, et al.
Publicado: (2023) -
A predictive model for residual disease after (chemo) radiotherapy in oropharyngeal carcinoma: Combined radiological and clinical evaluation of tumor response
por: Gouw, Zeno A.R., et al.
Publicado: (2017)