Cargando…
Implementation of the BERT-derived architectures to tackle disinformation challenges
Recent progress in the area of modern technologies confirms that information is not only a commodity but can also become a tool for competition and rivalry among governments and corporations, or can be applied by ill-willed people to use it in their hate speech practices. The impact of information i...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8295980/ https://www.ncbi.nlm.nih.gov/pubmed/34316097 http://dx.doi.org/10.1007/s00521-021-06276-0 |
Sumario: | Recent progress in the area of modern technologies confirms that information is not only a commodity but can also become a tool for competition and rivalry among governments and corporations, or can be applied by ill-willed people to use it in their hate speech practices. The impact of information is overpowering and can lead to many socially undesirable phenomena, such as panic or political instability. To eliminate the threats of fake news publishing, modern computer security systems need flexible and intelligent tools. The design of models meeting the above-mentioned criteria is enabled by artificial intelligence and, above all, by the state-of-the-art neural network architectures, applied in NLP tasks. The BERT neural network belongs to this type of architectures. This paper presents Transformer-based hybrid architectures applied to create models for detecting fake news. |
---|