Cargando…

Pickering Emulsions Based on the pH-Responsive Assembly of Food-Grade Chitosan

[Image: see text] Few natural, biocompatible, and inexpensive emulsifiers are available because such emulsifiers must satisfy severe requirements, be produced synthetically rather than naturally, be nontoxic, and require minimal effort to produce. Therefore, the synthesis of food-grade and biocompat...

Descripción completa

Detalles Bibliográficos
Autores principales: Ahmed, Rizwan, Wang, Mingwei, Qi, Zhiyao, Hira, Noor ul ain, Jiang, Jiahui, Zhang, Hongsen, Iqbal, Shahid, Wang, Junyou, Stuart, Martien Abraham Cohen, Guo, Xuhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8295998/
https://www.ncbi.nlm.nih.gov/pubmed/34308026
http://dx.doi.org/10.1021/acsomega.1c01490
Descripción
Sumario:[Image: see text] Few natural, biocompatible, and inexpensive emulsifiers are available because such emulsifiers must satisfy severe requirements, be produced synthetically rather than naturally, be nontoxic, and require minimal effort to produce. Therefore, the synthesis of food-grade and biocompatible nanoparticles as an alternative to surfactants has recently received attention in the industry. However, many previous efforts involved chemical modification of materials or the introduction of secondary cocomponents for emulsion formation. To achieve the goal of simple preparation, we consider here chitosan nanoparticles to prepare Pickering emulsions of food-grade oil through the control of pH, without further chemical modification or extra additives. A mild process can prepare nanoparticles from chitosan by simply increasing the pH from 3.0 to 6.0. The results showed that the average radius of chitosan at pH 6.0 was 170 nm, while large aggregates were formed at pH 6.5. These nanoparticles were utilized to prepare the Pickering emulsion. The average size of emulsion droplets decreased upon increasing the pH from 3.0 to 6.0. Moreover, Pickering emulsions at different oil fractions and nanoparticle concentrations were stable and showed a low creaming index for 45 days. The emulsions were stable against coalescence and flocculation and behaved rheologically as gel-like, shear-thinning fluids (G′ > G″). Pickering emulsion prevents the growth of the microorganism (Staphylococcus aureus) at different pH values and chitosan concentrations. These results demonstrate that chitosan nanoparticles could be a cost-effective and biocompatible emulsifier for the food or pharmaceutical industry for encapsulation and bioactive compounds, and Pickering emulsions have promising antibacterial effects for further applications.