Cargando…
Evaluation of a Filtering Facepiece Respirator and a Pleated Particulate Respirator in Filtering Ultrafine Particles and Submicron Particles in Welding and Asphalt Plant Work Environments
Manufacturing sites, such as welding, casting, and asphalt production (fumes), generate vast numbers of ultrafine particles of <0.1 µm in size and submicron particles close to the ultrafine range (0.1–0.5 µm). Although cumulative masses of these particles are negligible in comparison to the large...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8296285/ https://www.ncbi.nlm.nih.gov/pubmed/34198698 http://dx.doi.org/10.3390/ijerph18126437 |
Sumario: | Manufacturing sites, such as welding, casting, and asphalt production (fumes), generate vast numbers of ultrafine particles of <0.1 µm in size and submicron particles close to the ultrafine range (0.1–0.5 µm). Although cumulative masses of these particles are negligible in comparison to the larger particles, the health effects are more severe due to the higher penetration in the human lower respiratory tract, other body parts crossing the respiratory epithelial layers, and the larger surface area. This research investigates the effectiveness of two common commercially available N95 filtering facepieces and N95 pleated particulate respirator models against ultrafine and submicron particles. Two specific types of respirators, the N95 filtering facepiece and the N95 pleated particulate models, in both sealed and unsealed conditions to the manikin face, were tested at various commercial and academic manufacturing sites, a welding and foundry site, and an asphalt production plant. Two TSI Nanoscan SMPS nanoparticle counters were used simultaneously to collect data for particles of 10–420 nm in size from inside and outside of the respirators. While one of them represented the workplace exposure levels, the other one accounted for the exposure upon filtration through the respiratory surfaces. The results showed the particles generated by these manufacturing operations were mostly within the range of from 40 to 200 nm. Results also indicated that while the percentage of filtration levels varied based on the particle size, it remained mostly within the desired protection level of 95% for both of the N95 respirator models in sealed conditions and even for the N95 pleated particulate model in the unsealed condition. However, in the case of the N95 filtering facepiece model, unsealed respirators showed that the percentage of penetration was very high, decreasing the protection levels to 60% in some cases. Although the number of workplace airborne particle levels varied considerably, the filtration percentages were relatively consistent. |
---|