Cargando…
Bromide toxicosis (bromism) secondary to a decreased chloride intake after dietary transition in a dog with idiopathic epilepsy: a case report
BACKGROUND: Bromide is a halide ion of the element bromine usually administered in the form of potassium salt as monotherapy or add-on treatment in epileptic dogs. It is excreted unchanged in the urine and undergoes tubular reabsorption in competition with chloride. Thus, dietary chloride content af...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8296537/ https://www.ncbi.nlm.nih.gov/pubmed/34294099 http://dx.doi.org/10.1186/s12917-021-02959-x |
Sumario: | BACKGROUND: Bromide is a halide ion of the element bromine usually administered in the form of potassium salt as monotherapy or add-on treatment in epileptic dogs. It is excreted unchanged in the urine and undergoes tubular reabsorption in competition with chloride. Thus, dietary chloride content affects serum bromide concentrations. This is the first published clinical report of bromide toxicosis secondary to a dietary modification of chloride content in an epileptic dog treated with potassium bromide. CASE PRESENTATION: A 3-year-old 55-kg neutered male Tibetan Mastiff was evaluated because of a 1-month history of progressive signs including ataxia, lethargy and behaviour changes. The dog was successfully treated for idiopathic epilepsy since the age of 1-year-old with phenobarbital and potassium bromide. Two months prior to presentation, the owners decided to change the dog’s diet without veterinary advice. Physical examination was unremarkable. A 12-kg weight gain was recorded since last follow-up (8 months). Neurological examination revealed severe symmetric 4-limbs ataxia with altered vigilance and intermittent episodes of hyperactivity and aggressive behaviour without significant abnormality of cranial nerves. Serum bromide concentration was high and increased by 103 % since last follow-up. Nutritional evaluation revealed a 53 % decrease of chloride content in the diet before and after dietary transition. Bromide toxicosis was suspected, due to bromide reduced clearance secondary to the decreased dietary chloride content. Potassium bromide treatment was lowered by 15 % without further dietary changes. Neurologic signs progressively improved over the next month, without any seizure. After two months, the serum bromide concentration lowered to the same level measured before dietary modification. After four months, neurological examination was unremarkable. CONCLUSIONS: Dietary chloride content can directly influence serum bromide concentrations, therefore affecting seizure control or contributing to unexpected adverse effects. In the present case, a reduction in chloride intake markedly increased serum bromide concentrations causing bromism. Dietary changes should be avoided in dogs treated with potassium bromide to maintain stable serum bromide levels. |
---|