Cargando…
Formation and Properties of Superhydrophobic Al Coatings on Steel
[Image: see text] Thermal sprayed aluminum coatings are widely scalable to corrosion protection of the offshore steel structure. However, the corrosion rate of the Al coating increases considerably due to the severe marine environment. It has remained a challenge to improve the corrosion resistance...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8296599/ https://www.ncbi.nlm.nih.gov/pubmed/34308069 http://dx.doi.org/10.1021/acsomega.1c02299 |
Sumario: | [Image: see text] Thermal sprayed aluminum coatings are widely scalable to corrosion protection of the offshore steel structure. However, the corrosion rate of the Al coating increases considerably due to the severe marine environment. It has remained a challenge to improve the corrosion resistance and protective ability of Al coatings. The superhydrophobic surface provides a potential way to improve the corrosion resistance of metal materials. Hence, the development of superhydrophobic Al coatings with superior corrosion resistance is of great interest. In this work, the feasibility of the preparation of superhydrophobic Al coatings on a steel substrate was explored. First, Al coatings were prepared onto the steel substrate by the arc-spraying process, followed by ultrasonic etching with 0.1 M NaOH solution, and afterward passivated using 1% fluorosilanes. The effects of the etching time on morphology, contact angle, and corrosion resistance of the Al coatings were evaluated. The schematic model of the fluorosilane passivation process on the Al coating surface was provided. The micro/nanoscale surface structure of the low-surface-energy fluorosilanes promotes the wetting angle of 153.4° and a rolling angle to 6.6°, denoting the superhydrophobic properties. The superhydrophobic Al coating surface displays excellent self-cleaning performance due to its weak adhesion to water droplets. The corrosion current density of the superhydrophobic Al coating (1.36 × 10(–8) A cm(–2)) is 2 orders of magnitude lower than that of the as-sprayed Al coating (1.18 × 10(–6) A cm(–2)). Similarly, the charge-transfer resistance is found to be 12 times larger for the superhydrophobic Al coating and the corresponding corrosion inhibition efficiency reaches 98.9%. The superhydrophobic Al coating displays superior corrosion resistance and promising applications in a marine corrosion environment. |
---|