Cargando…

Variability of multi-omics profiles in a population-based child cohort

BACKGROUND: Multiple omics technologies are increasingly applied to detect early, subtle molecular responses to environmental stressors for future disease risk prevention. However, there is an urgent need for further evaluation of stability and variability of omics profiles in healthy individuals, e...

Descripción completa

Detalles Bibliográficos
Autores principales: Gallego-Paüls, Marta, Hernández-Ferrer, Carles, Bustamante, Mariona, Basagaña, Xavier, Barrera-Gómez, Jose, Lau, Chung-Ho E., Siskos, Alexandros P., Vives-Usano, Marta, Ruiz-Arenas, Carlos, Wright, John, Slama, Remy, Heude, Barbara, Casas, Maribel, Grazuleviciene, Regina, Chatzi, Leda, Borràs, Eva, Sabidó, Eduard, Carracedo, Ángel, Estivill, Xavier, Urquiza, Jose, Coen, Muireann, Keun, Hector C., González, Juan R., Vrijheid, Martine, Maitre, Léa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8296694/
https://www.ncbi.nlm.nih.gov/pubmed/34289836
http://dx.doi.org/10.1186/s12916-021-02027-z
_version_ 1783725697716453376
author Gallego-Paüls, Marta
Hernández-Ferrer, Carles
Bustamante, Mariona
Basagaña, Xavier
Barrera-Gómez, Jose
Lau, Chung-Ho E.
Siskos, Alexandros P.
Vives-Usano, Marta
Ruiz-Arenas, Carlos
Wright, John
Slama, Remy
Heude, Barbara
Casas, Maribel
Grazuleviciene, Regina
Chatzi, Leda
Borràs, Eva
Sabidó, Eduard
Carracedo, Ángel
Estivill, Xavier
Urquiza, Jose
Coen, Muireann
Keun, Hector C.
González, Juan R.
Vrijheid, Martine
Maitre, Léa
author_facet Gallego-Paüls, Marta
Hernández-Ferrer, Carles
Bustamante, Mariona
Basagaña, Xavier
Barrera-Gómez, Jose
Lau, Chung-Ho E.
Siskos, Alexandros P.
Vives-Usano, Marta
Ruiz-Arenas, Carlos
Wright, John
Slama, Remy
Heude, Barbara
Casas, Maribel
Grazuleviciene, Regina
Chatzi, Leda
Borràs, Eva
Sabidó, Eduard
Carracedo, Ángel
Estivill, Xavier
Urquiza, Jose
Coen, Muireann
Keun, Hector C.
González, Juan R.
Vrijheid, Martine
Maitre, Léa
author_sort Gallego-Paüls, Marta
collection PubMed
description BACKGROUND: Multiple omics technologies are increasingly applied to detect early, subtle molecular responses to environmental stressors for future disease risk prevention. However, there is an urgent need for further evaluation of stability and variability of omics profiles in healthy individuals, especially during childhood. METHODS: We aimed to estimate intra-, inter-individual and cohort variability of multi-omics profiles (blood DNA methylation, gene expression, miRNA, proteins and serum and urine metabolites) measured 6 months apart in 156 healthy children from five European countries. We further performed a multi-omics network analysis to establish clusters of co-varying omics features and assessed the contribution of key variables (including biological traits and sample collection parameters) to omics variability. RESULTS: All omics displayed a large range of intra- and inter-individual variability depending on each omics feature, although all presented a highest median intra-individual variability. DNA methylation was the most stable profile (median 37.6% inter-individual variability) while gene expression was the least stable (6.6%). Among the least stable features, we identified 1% cross-omics co-variation between CpGs and metabolites (e.g. glucose and CpGs related to obesity and type 2 diabetes). Explanatory variables, including age and body mass index (BMI), explained up to 9% of serum metabolite variability. CONCLUSIONS: Methylation and targeted serum metabolomics are the most reliable omics to implement in single time-point measurements in large cross-sectional studies. In the case of metabolomics, sample collection and individual traits (e.g. BMI) are important parameters to control for improved comparability, at the study design or analysis stage. This study will be valuable for the design and interpretation of epidemiological studies that aim to link omics signatures to disease, environmental exposures, or both. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12916-021-02027-z.
format Online
Article
Text
id pubmed-8296694
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-82966942021-07-22 Variability of multi-omics profiles in a population-based child cohort Gallego-Paüls, Marta Hernández-Ferrer, Carles Bustamante, Mariona Basagaña, Xavier Barrera-Gómez, Jose Lau, Chung-Ho E. Siskos, Alexandros P. Vives-Usano, Marta Ruiz-Arenas, Carlos Wright, John Slama, Remy Heude, Barbara Casas, Maribel Grazuleviciene, Regina Chatzi, Leda Borràs, Eva Sabidó, Eduard Carracedo, Ángel Estivill, Xavier Urquiza, Jose Coen, Muireann Keun, Hector C. González, Juan R. Vrijheid, Martine Maitre, Léa BMC Med Research Article BACKGROUND: Multiple omics technologies are increasingly applied to detect early, subtle molecular responses to environmental stressors for future disease risk prevention. However, there is an urgent need for further evaluation of stability and variability of omics profiles in healthy individuals, especially during childhood. METHODS: We aimed to estimate intra-, inter-individual and cohort variability of multi-omics profiles (blood DNA methylation, gene expression, miRNA, proteins and serum and urine metabolites) measured 6 months apart in 156 healthy children from five European countries. We further performed a multi-omics network analysis to establish clusters of co-varying omics features and assessed the contribution of key variables (including biological traits and sample collection parameters) to omics variability. RESULTS: All omics displayed a large range of intra- and inter-individual variability depending on each omics feature, although all presented a highest median intra-individual variability. DNA methylation was the most stable profile (median 37.6% inter-individual variability) while gene expression was the least stable (6.6%). Among the least stable features, we identified 1% cross-omics co-variation between CpGs and metabolites (e.g. glucose and CpGs related to obesity and type 2 diabetes). Explanatory variables, including age and body mass index (BMI), explained up to 9% of serum metabolite variability. CONCLUSIONS: Methylation and targeted serum metabolomics are the most reliable omics to implement in single time-point measurements in large cross-sectional studies. In the case of metabolomics, sample collection and individual traits (e.g. BMI) are important parameters to control for improved comparability, at the study design or analysis stage. This study will be valuable for the design and interpretation of epidemiological studies that aim to link omics signatures to disease, environmental exposures, or both. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12916-021-02027-z. BioMed Central 2021-07-22 /pmc/articles/PMC8296694/ /pubmed/34289836 http://dx.doi.org/10.1186/s12916-021-02027-z Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research Article
Gallego-Paüls, Marta
Hernández-Ferrer, Carles
Bustamante, Mariona
Basagaña, Xavier
Barrera-Gómez, Jose
Lau, Chung-Ho E.
Siskos, Alexandros P.
Vives-Usano, Marta
Ruiz-Arenas, Carlos
Wright, John
Slama, Remy
Heude, Barbara
Casas, Maribel
Grazuleviciene, Regina
Chatzi, Leda
Borràs, Eva
Sabidó, Eduard
Carracedo, Ángel
Estivill, Xavier
Urquiza, Jose
Coen, Muireann
Keun, Hector C.
González, Juan R.
Vrijheid, Martine
Maitre, Léa
Variability of multi-omics profiles in a population-based child cohort
title Variability of multi-omics profiles in a population-based child cohort
title_full Variability of multi-omics profiles in a population-based child cohort
title_fullStr Variability of multi-omics profiles in a population-based child cohort
title_full_unstemmed Variability of multi-omics profiles in a population-based child cohort
title_short Variability of multi-omics profiles in a population-based child cohort
title_sort variability of multi-omics profiles in a population-based child cohort
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8296694/
https://www.ncbi.nlm.nih.gov/pubmed/34289836
http://dx.doi.org/10.1186/s12916-021-02027-z
work_keys_str_mv AT gallegopaulsmarta variabilityofmultiomicsprofilesinapopulationbasedchildcohort
AT hernandezferrercarles variabilityofmultiomicsprofilesinapopulationbasedchildcohort
AT bustamantemariona variabilityofmultiomicsprofilesinapopulationbasedchildcohort
AT basaganaxavier variabilityofmultiomicsprofilesinapopulationbasedchildcohort
AT barreragomezjose variabilityofmultiomicsprofilesinapopulationbasedchildcohort
AT lauchunghoe variabilityofmultiomicsprofilesinapopulationbasedchildcohort
AT siskosalexandrosp variabilityofmultiomicsprofilesinapopulationbasedchildcohort
AT vivesusanomarta variabilityofmultiomicsprofilesinapopulationbasedchildcohort
AT ruizarenascarlos variabilityofmultiomicsprofilesinapopulationbasedchildcohort
AT wrightjohn variabilityofmultiomicsprofilesinapopulationbasedchildcohort
AT slamaremy variabilityofmultiomicsprofilesinapopulationbasedchildcohort
AT heudebarbara variabilityofmultiomicsprofilesinapopulationbasedchildcohort
AT casasmaribel variabilityofmultiomicsprofilesinapopulationbasedchildcohort
AT grazulevicieneregina variabilityofmultiomicsprofilesinapopulationbasedchildcohort
AT chatzileda variabilityofmultiomicsprofilesinapopulationbasedchildcohort
AT borraseva variabilityofmultiomicsprofilesinapopulationbasedchildcohort
AT sabidoeduard variabilityofmultiomicsprofilesinapopulationbasedchildcohort
AT carracedoangel variabilityofmultiomicsprofilesinapopulationbasedchildcohort
AT estivillxavier variabilityofmultiomicsprofilesinapopulationbasedchildcohort
AT urquizajose variabilityofmultiomicsprofilesinapopulationbasedchildcohort
AT coenmuireann variabilityofmultiomicsprofilesinapopulationbasedchildcohort
AT keunhectorc variabilityofmultiomicsprofilesinapopulationbasedchildcohort
AT gonzalezjuanr variabilityofmultiomicsprofilesinapopulationbasedchildcohort
AT vrijheidmartine variabilityofmultiomicsprofilesinapopulationbasedchildcohort
AT maitrelea variabilityofmultiomicsprofilesinapopulationbasedchildcohort