Cargando…
GAT-LI: a graph attention network based learning and interpreting method for functional brain network classification
BACKGROUND: Autism spectrum disorders (ASD) imply a spectrum of symptoms rather than a single phenotype. ASD could affect brain connectivity at different degree based on the severity of the symptom. Given their excellent learning capability, graph neural networks (GNN) methods have recently been use...
Autores principales: | Hu, Jinlong, Cao, Lijie, Li, Tenghui, Dong, Shoubin, Li, Ping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8296748/ https://www.ncbi.nlm.nih.gov/pubmed/34294047 http://dx.doi.org/10.1186/s12859-021-04295-1 |
Ejemplares similares
-
omicsGAT: Graph Attention Network for Cancer Subtype Analyses
por: Baul, Sudipto, et al.
Publicado: (2022) -
Interpretable Learning Approaches in Resting-State Functional Connectivity Analysis: The Case of Autism Spectrum Disorder
por: Hu, Jinlong, et al.
Publicado: (2020) -
TemporalGAT: Attention-Based Dynamic Graph Representation Learning
por: Fathy, Ahmed, et al.
Publicado: (2020) -
LaGAT: link-aware graph attention network for drug–drug interaction prediction
por: Hong, Yue, et al.
Publicado: (2022) -
sAMPpred-GAT: prediction of antimicrobial peptide by graph attention network and predicted peptide structure
por: Yan, Ke, et al.
Publicado: (2022)