Cargando…
Machine Learning for Predicting Risk of Drug-Induced Autoimmune Diseases by Structural Alerts and Daily Dose
An effective approach for assessing a drug’s potential to induce autoimmune diseases (ADs) is needed in drug development. Here, we aim to develop a workflow to examine the association between structural alerts and drugs-induced ADs to improve toxicological prescreening tools. Considering reactive me...
Autores principales: | Wu, Yue, Zhu, Jieqiang, Fu, Peter, Tong, Weida, Hong, Huixiao, Chen, Minjun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8296890/ https://www.ncbi.nlm.nih.gov/pubmed/34281077 http://dx.doi.org/10.3390/ijerph18137139 |
Ejemplares similares
-
Development of Decision Forest Models for Prediction of Drug-Induced Liver Injury in Humans Using A Large Set of FDA-approved Drugs
por: Hong, Huixiao, et al.
Publicado: (2017) -
Cancer genomics predicts disease relapse and therapeutic response to neoadjuvant chemotherapy of hormone sensitive breast cancers
por: Zhu, Jieqiang, et al.
Publicado: (2020) -
Prediction of estrogen receptor binding for 58,000 chemicals using an integrated system of a tree-based model with structural alerts.
por: Hong, Huixiao, et al.
Publicado: (2002) -
Machine Learning Methods for Predicting HLA–Peptide Binding Activity
por: Luo, Heng, et al.
Publicado: (2015) -
In Silico Prediction of Chemical Toxicity for Drug Design Using Machine Learning Methods and Structural Alerts
por: Yang, Hongbin, et al.
Publicado: (2018)