Cargando…
Human EEG and Recurrent Neural Networks Exhibit Common Temporal Dynamics During Speech Recognition
Recent deep-learning artificial neural networks have shown remarkable success in recognizing natural human speech, however the reasons for their success are not entirely understood. Success of these methods might be because state-of-the-art networks use recurrent layers or dilated convolutional laye...
Autores principales: | Hashemnia, Saeedeh, Grasse, Lukas, Soni, Shweta, Tata, Matthew S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8296978/ https://www.ncbi.nlm.nih.gov/pubmed/34305540 http://dx.doi.org/10.3389/fnsys.2021.617605 |
Ejemplares similares
-
Amphetamine reduces reward encoding and stabilizes neural dynamics in rat anterior cingulate cortex
por: Hashemnia, Saeedeh, et al.
Publicado: (2020) -
Neural Measures of Pitch Processing in EEG Responses to Running Speech
por: Bachmann, Florine L., et al.
Publicado: (2021) -
Auditory cortical deactivation during speech production and following speech perception: an EEG investigation of the temporal dynamics of the auditory alpha rhythm
por: Jenson, David, et al.
Publicado: (2015) -
Speech Interaction to Control a Hands-Free Delivery Robot for High-Risk Health Care Scenarios
por: Grasse, Lukas, et al.
Publicado: (2021) -
On the similarities of representations in artificial and brain neural networks for speech recognition
por: Wingfield, Cai, et al.
Publicado: (2022)