Cargando…
A Machine Learning Approach for Investigating Delirium as a Multifactorial Syndrome
Delirium is a psycho-organic syndrome common in hospitalized patients, especially the elderly, and is associated with poor clinical outcomes. This study aims to identify the predictors that are mostly associated with the risk of delirium episodes using a machine learning technique (MLT). A random fo...
Autores principales: | Ocagli, Honoria, Bottigliengo, Daniele, Lorenzoni, Giulia, Azzolina, Danila, Acar, Aslihan S., Sorgato, Silvia, Stivanello, Lucia, Degan, Mario, Gregori, Dario |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8297073/ https://www.ncbi.nlm.nih.gov/pubmed/34281037 http://dx.doi.org/10.3390/ijerph18137105 |
Ejemplares similares
-
Profiling Delirium Progression in Elderly Patients via Continuous-Time Markov Multi-State Transition Models
por: Ocagli, Honoria, et al.
Publicado: (2021) -
Profiling Patients by Intensity of Nursing Care: An Operative Approach Using Machine Learning
por: Ocagli, Honoria, et al.
Publicado: (2020) -
Using Social Networks to Estimate the Number of COVID-19 Cases: The Incident (Hidden COVID-19 Cases Network Estimation) Study Protocol
por: Ocagli, Honoria, et al.
Publicado: (2021) -
Epidemiology and Trends over Time of Foreign Body Injuries in the Pediatric Emergency Department
por: Ocagli, Honoria, et al.
Publicado: (2021) -
Propensity Score Analysis with Partially Observed Baseline Covariates: A Practical Comparison of Methods for Handling Missing Data
por: Bottigliengo, Daniele, et al.
Publicado: (2021)