Cargando…
Diagnostic Accuracy of Machine Learning Models to Identify Congenital Heart Disease: A Meta-Analysis
Background: With the dearth of trained care providers to diagnose congenital heart disease (CHD) and a surge in machine learning (ML) models, this review aims to estimate the diagnostic accuracy of such models for detecting CHD. Methods: A comprehensive literature search in the PubMed, CINAHL, Wiley...
Autores principales: | Hoodbhoy, Zahra, Jiwani, Uswa, Sattar, Saima, Salam, Rehana, Hasan, Babar, Das, Jai K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8297386/ https://www.ncbi.nlm.nih.gov/pubmed/34308341 http://dx.doi.org/10.3389/frai.2021.708365 |
Ejemplares similares
-
Diagnostic accuracy of artificial intelligence for detecting gastrointestinal luminal pathologies: A systematic review and meta-analysis
por: Parkash, Om, et al.
Publicado: (2022) -
Classification model for accuracy and intrusion detection using machine learning approach
por: Agarwal, Arushi, et al.
Publicado: (2021) -
A Novel Bayesian General Medical Diagnostic Assistant Achieves Superior Accuracy With Sparse History: A Performance Comparison of 7 Online Diagnostic Aids and Physicians
por: Jones, Alicia M., et al.
Publicado: (2022) -
Machine learning approaches to identify Parkinson's disease using voice signal features
por: Alshammri, Raya, et al.
Publicado: (2023) -
Interpretability Versus Accuracy: A Comparison of Machine Learning Models Built Using Different Algorithms, Performance Measures, and Features to Predict E. coli Levels in Agricultural Water
por: Weller, Daniel L., et al.
Publicado: (2021)