Cargando…
Spatially resolved analysis of Pseudomonas aeruginosa biofilm proteomes measured by laser ablation sample transfer
Heterogeneity in the distribution of nutrients and oxygen gradients during biofilm growth gives rise to changes in phenotype. There has been long term interest in identifying spatial differences during biofilm development including clues that identify chemical heterogeneity. Laser ablation sample tr...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8297752/ https://www.ncbi.nlm.nih.gov/pubmed/34292966 http://dx.doi.org/10.1371/journal.pone.0250911 |
_version_ | 1783725917000957952 |
---|---|
author | Pulukkody, Aruni Chathurya Yung, Yeni P. Donnarumma, Fabrizio Murray, Kermit K. Carlson, Ross P. Hanley, Luke |
author_facet | Pulukkody, Aruni Chathurya Yung, Yeni P. Donnarumma, Fabrizio Murray, Kermit K. Carlson, Ross P. Hanley, Luke |
author_sort | Pulukkody, Aruni Chathurya |
collection | PubMed |
description | Heterogeneity in the distribution of nutrients and oxygen gradients during biofilm growth gives rise to changes in phenotype. There has been long term interest in identifying spatial differences during biofilm development including clues that identify chemical heterogeneity. Laser ablation sample transfer (LAST) allows site-specific sampling combined with label free proteomics to distinguish radially and axially resolved proteomes for Pseudomonas aeruginosa biofilms. Specifically, differential protein abundances on oxic vs. anoxic regions of a biofilm were observed by combining LAST with bottom up proteomics. This study reveals a more active metabolism in the anoxic region of the biofilm with respect to the oxic region for this clinical strain of P. aeruginosa, despite this organism being considered an aerobe by nature. Protein abundance data related to cellular acclimations to chemical gradients include identification of glucose catabolizing proteins, high abundance of proteins from arginine and polyamine metabolism, and proteins that could also support virulence and environmental stress mediation in the anoxic region. Finally, the LAST methodology requires only a few mm(2) of biofilm area to identify hundreds of proteins. |
format | Online Article Text |
id | pubmed-8297752 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-82977522021-07-31 Spatially resolved analysis of Pseudomonas aeruginosa biofilm proteomes measured by laser ablation sample transfer Pulukkody, Aruni Chathurya Yung, Yeni P. Donnarumma, Fabrizio Murray, Kermit K. Carlson, Ross P. Hanley, Luke PLoS One Research Article Heterogeneity in the distribution of nutrients and oxygen gradients during biofilm growth gives rise to changes in phenotype. There has been long term interest in identifying spatial differences during biofilm development including clues that identify chemical heterogeneity. Laser ablation sample transfer (LAST) allows site-specific sampling combined with label free proteomics to distinguish radially and axially resolved proteomes for Pseudomonas aeruginosa biofilms. Specifically, differential protein abundances on oxic vs. anoxic regions of a biofilm were observed by combining LAST with bottom up proteomics. This study reveals a more active metabolism in the anoxic region of the biofilm with respect to the oxic region for this clinical strain of P. aeruginosa, despite this organism being considered an aerobe by nature. Protein abundance data related to cellular acclimations to chemical gradients include identification of glucose catabolizing proteins, high abundance of proteins from arginine and polyamine metabolism, and proteins that could also support virulence and environmental stress mediation in the anoxic region. Finally, the LAST methodology requires only a few mm(2) of biofilm area to identify hundreds of proteins. Public Library of Science 2021-07-22 /pmc/articles/PMC8297752/ /pubmed/34292966 http://dx.doi.org/10.1371/journal.pone.0250911 Text en © 2021 Pulukkody et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Pulukkody, Aruni Chathurya Yung, Yeni P. Donnarumma, Fabrizio Murray, Kermit K. Carlson, Ross P. Hanley, Luke Spatially resolved analysis of Pseudomonas aeruginosa biofilm proteomes measured by laser ablation sample transfer |
title | Spatially resolved analysis of Pseudomonas aeruginosa biofilm proteomes measured by laser ablation sample transfer |
title_full | Spatially resolved analysis of Pseudomonas aeruginosa biofilm proteomes measured by laser ablation sample transfer |
title_fullStr | Spatially resolved analysis of Pseudomonas aeruginosa biofilm proteomes measured by laser ablation sample transfer |
title_full_unstemmed | Spatially resolved analysis of Pseudomonas aeruginosa biofilm proteomes measured by laser ablation sample transfer |
title_short | Spatially resolved analysis of Pseudomonas aeruginosa biofilm proteomes measured by laser ablation sample transfer |
title_sort | spatially resolved analysis of pseudomonas aeruginosa biofilm proteomes measured by laser ablation sample transfer |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8297752/ https://www.ncbi.nlm.nih.gov/pubmed/34292966 http://dx.doi.org/10.1371/journal.pone.0250911 |
work_keys_str_mv | AT pulukkodyarunichathurya spatiallyresolvedanalysisofpseudomonasaeruginosabiofilmproteomesmeasuredbylaserablationsampletransfer AT yungyenip spatiallyresolvedanalysisofpseudomonasaeruginosabiofilmproteomesmeasuredbylaserablationsampletransfer AT donnarummafabrizio spatiallyresolvedanalysisofpseudomonasaeruginosabiofilmproteomesmeasuredbylaserablationsampletransfer AT murraykermitk spatiallyresolvedanalysisofpseudomonasaeruginosabiofilmproteomesmeasuredbylaserablationsampletransfer AT carlsonrossp spatiallyresolvedanalysisofpseudomonasaeruginosabiofilmproteomesmeasuredbylaserablationsampletransfer AT hanleyluke spatiallyresolvedanalysisofpseudomonasaeruginosabiofilmproteomesmeasuredbylaserablationsampletransfer |