Cargando…
An Inexact Penalty Decomposition Method for Sparse Optimization
The penalty decomposition method is an effective and versatile method for sparse optimization and has been successfully applied to solve compressed sensing, sparse logistic regression, sparse inverse covariance selection, low rank minimization, image restoration, and so on. With increase in the pena...
Autores principales: | Dong, Zhengshan, Lin, Geng, Chen, Niandong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8298164/ https://www.ncbi.nlm.nih.gov/pubmed/34335731 http://dx.doi.org/10.1155/2021/9943519 |
Ejemplares similares
-
Linear optimization problems with inexact data
por: Fiedler, M, et al.
Publicado: (2006) -
Inexactness of Medical Writers
por: Hudson, A. S.
Publicado: (1858) -
An Inexact Feasible Quantum Interior Point Method for Linearly Constrained Quadratic Optimization
por: Wu, Zeguan, et al.
Publicado: (2023) -
An Inexact Optimization Model for Crop Area Under Multiple Uncertainties
por: Ren, Chongfeng, et al.
Publicado: (2019) -
Sparse ECG Denoising with Generalized Minimax Concave Penalty
por: Jin, Zhongyi, et al.
Publicado: (2019)