Cargando…
Multi-patient study for coronary vulnerable plaque model comparisons: 2D/3D and fluid–structure interaction simulations
Several image-based computational models have been used to perform mechanical analysis for atherosclerotic plaque progression and vulnerability investigations. However, differences of computational predictions from those models have not been quantified at multi-patient level. In vivo intravascular u...
Autores principales: | Wang, Qingyu, Tang, Dalin, Wang, Liang, Meahara, Akiko, Molony, David, Samady, Habib, Zheng, Jie, Mintz, Gary S., Stone, Gregg W., Giddens, Don P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8298251/ https://www.ncbi.nlm.nih.gov/pubmed/33759037 http://dx.doi.org/10.1007/s10237-021-01450-8 |
Ejemplares similares
-
Using optical coherence tomography and intravascular ultrasound imaging to quantify coronary plaque cap thickness and vulnerability: a pilot study
por: Lv, Rui, et al.
Publicado: (2020) -
Predicting plaque vulnerability change using intravascular ultrasound + optical coherence tomography image-based fluid–structure interaction models and machine learning methods with patient follow-up data: a feasibility study
por: Guo, Xiaoya, et al.
Publicado: (2021) -
Predicting Coronary Stenosis Progression Using Plaque Fatigue From IVUS-Based Thin-Slice Models: A Machine Learning Random Forest Approach
por: Guo, Xiaoya, et al.
Publicado: (2022) -
Using Optical Coherence Tomography and Intravascular Ultrasound Imaging to Quantify Coronary Plaque Cap Stress/Strain and Progression: A Follow-Up Study Using 3D Thin-Layer Models
por: Lv, Rui, et al.
Publicado: (2021) -
Combining IVUS + OCT Data, Biomechanical Models and Machine Learning Method for Accurate Coronary Plaque Morphology Quantification and Cap Thickness and Stress/Strain Index Predictions
por: Lv, Rui, et al.
Publicado: (2023)