Cargando…

Quantification of tumor microenvironment acidity in glioblastoma using principal component analysis of dynamic susceptibility contrast enhanced MR imaging

Glioblastoma (GBM) has high metabolic demands, which can lead to acidification of the tumor microenvironment. We hypothesize that a machine learning model built on temporal principal component analysis (PCA) of dynamic susceptibility contrast-enhanced (DSC) perfusion MRI can be used to estimate tumo...

Descripción completa

Detalles Bibliográficos
Autores principales: Akbari, Hamed, Kazerooni, Anahita Fathi, Ware, Jeffrey B., Mamourian, Elizabeth, Anderson, Hannah, Guiry, Samantha, Sako, Chiharu, Raymond, Catalina, Yao, Jingwen, Brem, Steven, O’Rourke, Donald M., Desai, Arati S., Bagley, Stephen J., Ellingson, Benjamin M., Davatzikos, Christos, Nabavizadeh, Ali
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8298590/
https://www.ncbi.nlm.nih.gov/pubmed/34294864
http://dx.doi.org/10.1038/s41598-021-94560-3
_version_ 1783726097297309696
author Akbari, Hamed
Kazerooni, Anahita Fathi
Ware, Jeffrey B.
Mamourian, Elizabeth
Anderson, Hannah
Guiry, Samantha
Sako, Chiharu
Raymond, Catalina
Yao, Jingwen
Brem, Steven
O’Rourke, Donald M.
Desai, Arati S.
Bagley, Stephen J.
Ellingson, Benjamin M.
Davatzikos, Christos
Nabavizadeh, Ali
author_facet Akbari, Hamed
Kazerooni, Anahita Fathi
Ware, Jeffrey B.
Mamourian, Elizabeth
Anderson, Hannah
Guiry, Samantha
Sako, Chiharu
Raymond, Catalina
Yao, Jingwen
Brem, Steven
O’Rourke, Donald M.
Desai, Arati S.
Bagley, Stephen J.
Ellingson, Benjamin M.
Davatzikos, Christos
Nabavizadeh, Ali
author_sort Akbari, Hamed
collection PubMed
description Glioblastoma (GBM) has high metabolic demands, which can lead to acidification of the tumor microenvironment. We hypothesize that a machine learning model built on temporal principal component analysis (PCA) of dynamic susceptibility contrast-enhanced (DSC) perfusion MRI can be used to estimate tumor acidity in GBM, as estimated by pH-sensitive amine chemical exchange saturation transfer echo-planar imaging (CEST-EPI). We analyzed 78 MRI scans in 32 treatment naïve and post-treatment GBM patients. All patients were imaged with DSC-MRI, and pH-weighting that was quantified from CEST-EPI estimation of the magnetization transfer ratio asymmetry (MTR(asym)) at 3 ppm. Enhancing tumor (ET), non-enhancing core (NC), and peritumoral T2 hyperintensity (namely, edema, ED) were used to extract principal components (PCs) and to build support vector machines regression (SVR) models to predict MTR(asym) values using PCs. Our predicted map correlated with MTR(asym) values with Spearman’s r equal to 0.66, 0.47, 0.67, 0.71, in NC, ET, ED, and overall, respectively (p < 0.006). The results of this study demonstrates that PCA analysis of DSC imaging data can provide information about tumor pH in GBM patients, with the strongest association within the peritumoral regions.
format Online
Article
Text
id pubmed-8298590
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-82985902021-07-27 Quantification of tumor microenvironment acidity in glioblastoma using principal component analysis of dynamic susceptibility contrast enhanced MR imaging Akbari, Hamed Kazerooni, Anahita Fathi Ware, Jeffrey B. Mamourian, Elizabeth Anderson, Hannah Guiry, Samantha Sako, Chiharu Raymond, Catalina Yao, Jingwen Brem, Steven O’Rourke, Donald M. Desai, Arati S. Bagley, Stephen J. Ellingson, Benjamin M. Davatzikos, Christos Nabavizadeh, Ali Sci Rep Article Glioblastoma (GBM) has high metabolic demands, which can lead to acidification of the tumor microenvironment. We hypothesize that a machine learning model built on temporal principal component analysis (PCA) of dynamic susceptibility contrast-enhanced (DSC) perfusion MRI can be used to estimate tumor acidity in GBM, as estimated by pH-sensitive amine chemical exchange saturation transfer echo-planar imaging (CEST-EPI). We analyzed 78 MRI scans in 32 treatment naïve and post-treatment GBM patients. All patients were imaged with DSC-MRI, and pH-weighting that was quantified from CEST-EPI estimation of the magnetization transfer ratio asymmetry (MTR(asym)) at 3 ppm. Enhancing tumor (ET), non-enhancing core (NC), and peritumoral T2 hyperintensity (namely, edema, ED) were used to extract principal components (PCs) and to build support vector machines regression (SVR) models to predict MTR(asym) values using PCs. Our predicted map correlated with MTR(asym) values with Spearman’s r equal to 0.66, 0.47, 0.67, 0.71, in NC, ET, ED, and overall, respectively (p < 0.006). The results of this study demonstrates that PCA analysis of DSC imaging data can provide information about tumor pH in GBM patients, with the strongest association within the peritumoral regions. Nature Publishing Group UK 2021-07-22 /pmc/articles/PMC8298590/ /pubmed/34294864 http://dx.doi.org/10.1038/s41598-021-94560-3 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Akbari, Hamed
Kazerooni, Anahita Fathi
Ware, Jeffrey B.
Mamourian, Elizabeth
Anderson, Hannah
Guiry, Samantha
Sako, Chiharu
Raymond, Catalina
Yao, Jingwen
Brem, Steven
O’Rourke, Donald M.
Desai, Arati S.
Bagley, Stephen J.
Ellingson, Benjamin M.
Davatzikos, Christos
Nabavizadeh, Ali
Quantification of tumor microenvironment acidity in glioblastoma using principal component analysis of dynamic susceptibility contrast enhanced MR imaging
title Quantification of tumor microenvironment acidity in glioblastoma using principal component analysis of dynamic susceptibility contrast enhanced MR imaging
title_full Quantification of tumor microenvironment acidity in glioblastoma using principal component analysis of dynamic susceptibility contrast enhanced MR imaging
title_fullStr Quantification of tumor microenvironment acidity in glioblastoma using principal component analysis of dynamic susceptibility contrast enhanced MR imaging
title_full_unstemmed Quantification of tumor microenvironment acidity in glioblastoma using principal component analysis of dynamic susceptibility contrast enhanced MR imaging
title_short Quantification of tumor microenvironment acidity in glioblastoma using principal component analysis of dynamic susceptibility contrast enhanced MR imaging
title_sort quantification of tumor microenvironment acidity in glioblastoma using principal component analysis of dynamic susceptibility contrast enhanced mr imaging
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8298590/
https://www.ncbi.nlm.nih.gov/pubmed/34294864
http://dx.doi.org/10.1038/s41598-021-94560-3
work_keys_str_mv AT akbarihamed quantificationoftumormicroenvironmentacidityinglioblastomausingprincipalcomponentanalysisofdynamicsusceptibilitycontrastenhancedmrimaging
AT kazeroonianahitafathi quantificationoftumormicroenvironmentacidityinglioblastomausingprincipalcomponentanalysisofdynamicsusceptibilitycontrastenhancedmrimaging
AT warejeffreyb quantificationoftumormicroenvironmentacidityinglioblastomausingprincipalcomponentanalysisofdynamicsusceptibilitycontrastenhancedmrimaging
AT mamourianelizabeth quantificationoftumormicroenvironmentacidityinglioblastomausingprincipalcomponentanalysisofdynamicsusceptibilitycontrastenhancedmrimaging
AT andersonhannah quantificationoftumormicroenvironmentacidityinglioblastomausingprincipalcomponentanalysisofdynamicsusceptibilitycontrastenhancedmrimaging
AT guirysamantha quantificationoftumormicroenvironmentacidityinglioblastomausingprincipalcomponentanalysisofdynamicsusceptibilitycontrastenhancedmrimaging
AT sakochiharu quantificationoftumormicroenvironmentacidityinglioblastomausingprincipalcomponentanalysisofdynamicsusceptibilitycontrastenhancedmrimaging
AT raymondcatalina quantificationoftumormicroenvironmentacidityinglioblastomausingprincipalcomponentanalysisofdynamicsusceptibilitycontrastenhancedmrimaging
AT yaojingwen quantificationoftumormicroenvironmentacidityinglioblastomausingprincipalcomponentanalysisofdynamicsusceptibilitycontrastenhancedmrimaging
AT bremsteven quantificationoftumormicroenvironmentacidityinglioblastomausingprincipalcomponentanalysisofdynamicsusceptibilitycontrastenhancedmrimaging
AT orourkedonaldm quantificationoftumormicroenvironmentacidityinglioblastomausingprincipalcomponentanalysisofdynamicsusceptibilitycontrastenhancedmrimaging
AT desaiaratis quantificationoftumormicroenvironmentacidityinglioblastomausingprincipalcomponentanalysisofdynamicsusceptibilitycontrastenhancedmrimaging
AT bagleystephenj quantificationoftumormicroenvironmentacidityinglioblastomausingprincipalcomponentanalysisofdynamicsusceptibilitycontrastenhancedmrimaging
AT ellingsonbenjaminm quantificationoftumormicroenvironmentacidityinglioblastomausingprincipalcomponentanalysisofdynamicsusceptibilitycontrastenhancedmrimaging
AT davatzikoschristos quantificationoftumormicroenvironmentacidityinglioblastomausingprincipalcomponentanalysisofdynamicsusceptibilitycontrastenhancedmrimaging
AT nabavizadehali quantificationoftumormicroenvironmentacidityinglioblastomausingprincipalcomponentanalysisofdynamicsusceptibilitycontrastenhancedmrimaging