Cargando…
Quantification of tumor microenvironment acidity in glioblastoma using principal component analysis of dynamic susceptibility contrast enhanced MR imaging
Glioblastoma (GBM) has high metabolic demands, which can lead to acidification of the tumor microenvironment. We hypothesize that a machine learning model built on temporal principal component analysis (PCA) of dynamic susceptibility contrast-enhanced (DSC) perfusion MRI can be used to estimate tumo...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8298590/ https://www.ncbi.nlm.nih.gov/pubmed/34294864 http://dx.doi.org/10.1038/s41598-021-94560-3 |
_version_ | 1783726097297309696 |
---|---|
author | Akbari, Hamed Kazerooni, Anahita Fathi Ware, Jeffrey B. Mamourian, Elizabeth Anderson, Hannah Guiry, Samantha Sako, Chiharu Raymond, Catalina Yao, Jingwen Brem, Steven O’Rourke, Donald M. Desai, Arati S. Bagley, Stephen J. Ellingson, Benjamin M. Davatzikos, Christos Nabavizadeh, Ali |
author_facet | Akbari, Hamed Kazerooni, Anahita Fathi Ware, Jeffrey B. Mamourian, Elizabeth Anderson, Hannah Guiry, Samantha Sako, Chiharu Raymond, Catalina Yao, Jingwen Brem, Steven O’Rourke, Donald M. Desai, Arati S. Bagley, Stephen J. Ellingson, Benjamin M. Davatzikos, Christos Nabavizadeh, Ali |
author_sort | Akbari, Hamed |
collection | PubMed |
description | Glioblastoma (GBM) has high metabolic demands, which can lead to acidification of the tumor microenvironment. We hypothesize that a machine learning model built on temporal principal component analysis (PCA) of dynamic susceptibility contrast-enhanced (DSC) perfusion MRI can be used to estimate tumor acidity in GBM, as estimated by pH-sensitive amine chemical exchange saturation transfer echo-planar imaging (CEST-EPI). We analyzed 78 MRI scans in 32 treatment naïve and post-treatment GBM patients. All patients were imaged with DSC-MRI, and pH-weighting that was quantified from CEST-EPI estimation of the magnetization transfer ratio asymmetry (MTR(asym)) at 3 ppm. Enhancing tumor (ET), non-enhancing core (NC), and peritumoral T2 hyperintensity (namely, edema, ED) were used to extract principal components (PCs) and to build support vector machines regression (SVR) models to predict MTR(asym) values using PCs. Our predicted map correlated with MTR(asym) values with Spearman’s r equal to 0.66, 0.47, 0.67, 0.71, in NC, ET, ED, and overall, respectively (p < 0.006). The results of this study demonstrates that PCA analysis of DSC imaging data can provide information about tumor pH in GBM patients, with the strongest association within the peritumoral regions. |
format | Online Article Text |
id | pubmed-8298590 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-82985902021-07-27 Quantification of tumor microenvironment acidity in glioblastoma using principal component analysis of dynamic susceptibility contrast enhanced MR imaging Akbari, Hamed Kazerooni, Anahita Fathi Ware, Jeffrey B. Mamourian, Elizabeth Anderson, Hannah Guiry, Samantha Sako, Chiharu Raymond, Catalina Yao, Jingwen Brem, Steven O’Rourke, Donald M. Desai, Arati S. Bagley, Stephen J. Ellingson, Benjamin M. Davatzikos, Christos Nabavizadeh, Ali Sci Rep Article Glioblastoma (GBM) has high metabolic demands, which can lead to acidification of the tumor microenvironment. We hypothesize that a machine learning model built on temporal principal component analysis (PCA) of dynamic susceptibility contrast-enhanced (DSC) perfusion MRI can be used to estimate tumor acidity in GBM, as estimated by pH-sensitive amine chemical exchange saturation transfer echo-planar imaging (CEST-EPI). We analyzed 78 MRI scans in 32 treatment naïve and post-treatment GBM patients. All patients were imaged with DSC-MRI, and pH-weighting that was quantified from CEST-EPI estimation of the magnetization transfer ratio asymmetry (MTR(asym)) at 3 ppm. Enhancing tumor (ET), non-enhancing core (NC), and peritumoral T2 hyperintensity (namely, edema, ED) were used to extract principal components (PCs) and to build support vector machines regression (SVR) models to predict MTR(asym) values using PCs. Our predicted map correlated with MTR(asym) values with Spearman’s r equal to 0.66, 0.47, 0.67, 0.71, in NC, ET, ED, and overall, respectively (p < 0.006). The results of this study demonstrates that PCA analysis of DSC imaging data can provide information about tumor pH in GBM patients, with the strongest association within the peritumoral regions. Nature Publishing Group UK 2021-07-22 /pmc/articles/PMC8298590/ /pubmed/34294864 http://dx.doi.org/10.1038/s41598-021-94560-3 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Akbari, Hamed Kazerooni, Anahita Fathi Ware, Jeffrey B. Mamourian, Elizabeth Anderson, Hannah Guiry, Samantha Sako, Chiharu Raymond, Catalina Yao, Jingwen Brem, Steven O’Rourke, Donald M. Desai, Arati S. Bagley, Stephen J. Ellingson, Benjamin M. Davatzikos, Christos Nabavizadeh, Ali Quantification of tumor microenvironment acidity in glioblastoma using principal component analysis of dynamic susceptibility contrast enhanced MR imaging |
title | Quantification of tumor microenvironment acidity in glioblastoma using principal component analysis of dynamic susceptibility contrast enhanced MR imaging |
title_full | Quantification of tumor microenvironment acidity in glioblastoma using principal component analysis of dynamic susceptibility contrast enhanced MR imaging |
title_fullStr | Quantification of tumor microenvironment acidity in glioblastoma using principal component analysis of dynamic susceptibility contrast enhanced MR imaging |
title_full_unstemmed | Quantification of tumor microenvironment acidity in glioblastoma using principal component analysis of dynamic susceptibility contrast enhanced MR imaging |
title_short | Quantification of tumor microenvironment acidity in glioblastoma using principal component analysis of dynamic susceptibility contrast enhanced MR imaging |
title_sort | quantification of tumor microenvironment acidity in glioblastoma using principal component analysis of dynamic susceptibility contrast enhanced mr imaging |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8298590/ https://www.ncbi.nlm.nih.gov/pubmed/34294864 http://dx.doi.org/10.1038/s41598-021-94560-3 |
work_keys_str_mv | AT akbarihamed quantificationoftumormicroenvironmentacidityinglioblastomausingprincipalcomponentanalysisofdynamicsusceptibilitycontrastenhancedmrimaging AT kazeroonianahitafathi quantificationoftumormicroenvironmentacidityinglioblastomausingprincipalcomponentanalysisofdynamicsusceptibilitycontrastenhancedmrimaging AT warejeffreyb quantificationoftumormicroenvironmentacidityinglioblastomausingprincipalcomponentanalysisofdynamicsusceptibilitycontrastenhancedmrimaging AT mamourianelizabeth quantificationoftumormicroenvironmentacidityinglioblastomausingprincipalcomponentanalysisofdynamicsusceptibilitycontrastenhancedmrimaging AT andersonhannah quantificationoftumormicroenvironmentacidityinglioblastomausingprincipalcomponentanalysisofdynamicsusceptibilitycontrastenhancedmrimaging AT guirysamantha quantificationoftumormicroenvironmentacidityinglioblastomausingprincipalcomponentanalysisofdynamicsusceptibilitycontrastenhancedmrimaging AT sakochiharu quantificationoftumormicroenvironmentacidityinglioblastomausingprincipalcomponentanalysisofdynamicsusceptibilitycontrastenhancedmrimaging AT raymondcatalina quantificationoftumormicroenvironmentacidityinglioblastomausingprincipalcomponentanalysisofdynamicsusceptibilitycontrastenhancedmrimaging AT yaojingwen quantificationoftumormicroenvironmentacidityinglioblastomausingprincipalcomponentanalysisofdynamicsusceptibilitycontrastenhancedmrimaging AT bremsteven quantificationoftumormicroenvironmentacidityinglioblastomausingprincipalcomponentanalysisofdynamicsusceptibilitycontrastenhancedmrimaging AT orourkedonaldm quantificationoftumormicroenvironmentacidityinglioblastomausingprincipalcomponentanalysisofdynamicsusceptibilitycontrastenhancedmrimaging AT desaiaratis quantificationoftumormicroenvironmentacidityinglioblastomausingprincipalcomponentanalysisofdynamicsusceptibilitycontrastenhancedmrimaging AT bagleystephenj quantificationoftumormicroenvironmentacidityinglioblastomausingprincipalcomponentanalysisofdynamicsusceptibilitycontrastenhancedmrimaging AT ellingsonbenjaminm quantificationoftumormicroenvironmentacidityinglioblastomausingprincipalcomponentanalysisofdynamicsusceptibilitycontrastenhancedmrimaging AT davatzikoschristos quantificationoftumormicroenvironmentacidityinglioblastomausingprincipalcomponentanalysisofdynamicsusceptibilitycontrastenhancedmrimaging AT nabavizadehali quantificationoftumormicroenvironmentacidityinglioblastomausingprincipalcomponentanalysisofdynamicsusceptibilitycontrastenhancedmrimaging |