Cargando…
The keratinolytic bacteria Bacillus cytotoxicus as a source of novel proteases and feather protein hydrolysates with antioxidant activities
BACKGROUND: Argentina’s geothermal areas are niches of a rich microbial diversity. In 2020, species of Bacillus cytotoxicus were isolated for the first time from these types of pristine natural areas. Bacillus cytotoxicus strains demonstrated the capability to grow and degrade chicken feathers with...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8298642/ https://www.ncbi.nlm.nih.gov/pubmed/34292436 http://dx.doi.org/10.1186/s43141-021-00207-1 |
_version_ | 1783726104876417024 |
---|---|
author | Cavello, Ivana Bezus, Brenda Cavalitto, Sebastián |
author_facet | Cavello, Ivana Bezus, Brenda Cavalitto, Sebastián |
author_sort | Cavello, Ivana |
collection | PubMed |
description | BACKGROUND: Argentina’s geothermal areas are niches of a rich microbial diversity. In 2020, species of Bacillus cytotoxicus were isolated for the first time from these types of pristine natural areas. Bacillus cytotoxicus strains demonstrated the capability to grow and degrade chicken feathers with the concomitant production of proteases with keratinolytic activity, enzymes that have multitude of industrial applications. The aim of this research was to study the production of the proteolytic enzymes and its characterization. Also, feather protein hydrolysates produced during fermentation were characterized. RESULTS: Among the thermotolerant strains isolated from the Domuyo geothermal area (Neuquén province, Argentina), Bacillus cytotoxicus LT-1 and Oll-15 were selected and put through submerged cultures using feather wastes as sole carbon, nitrogen, and energy source in order to obtain proteolytic enzymes and protein hydrolysates. Complete degradation of feathers was achieved after 48 h. Zymograms demonstrated the presence of several proteolytic enzymes with an estimated molecular weight between 50 and > 120 kDa. Optimum pH and temperatures of Bacillus cytotoxicus LT-1 crude extract were 7.0 and 40 °C, meanwhile for Oll-15 were 7.0 and 50 °C. Crude extracts were inhibited by EDTA and 1,10 phenanthroline indicating the presence of metalloproteases. Feather protein hydrolysates showed an interesting antioxidant potential measured through radical-scavenging and Fe(3+)-reducing activities. CONCLUSION: This work represents an initial approach on the study of the biotechnological potential of proteases produced by Bacillus cytotoxicus. The results demonstrated the importance of continuous search for new biocatalysts with new characteristics and enzymes to be able to cope with the demands in the market. |
format | Online Article Text |
id | pubmed-8298642 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-82986422021-08-05 The keratinolytic bacteria Bacillus cytotoxicus as a source of novel proteases and feather protein hydrolysates with antioxidant activities Cavello, Ivana Bezus, Brenda Cavalitto, Sebastián J Genet Eng Biotechnol Research BACKGROUND: Argentina’s geothermal areas are niches of a rich microbial diversity. In 2020, species of Bacillus cytotoxicus were isolated for the first time from these types of pristine natural areas. Bacillus cytotoxicus strains demonstrated the capability to grow and degrade chicken feathers with the concomitant production of proteases with keratinolytic activity, enzymes that have multitude of industrial applications. The aim of this research was to study the production of the proteolytic enzymes and its characterization. Also, feather protein hydrolysates produced during fermentation were characterized. RESULTS: Among the thermotolerant strains isolated from the Domuyo geothermal area (Neuquén province, Argentina), Bacillus cytotoxicus LT-1 and Oll-15 were selected and put through submerged cultures using feather wastes as sole carbon, nitrogen, and energy source in order to obtain proteolytic enzymes and protein hydrolysates. Complete degradation of feathers was achieved after 48 h. Zymograms demonstrated the presence of several proteolytic enzymes with an estimated molecular weight between 50 and > 120 kDa. Optimum pH and temperatures of Bacillus cytotoxicus LT-1 crude extract were 7.0 and 40 °C, meanwhile for Oll-15 were 7.0 and 50 °C. Crude extracts were inhibited by EDTA and 1,10 phenanthroline indicating the presence of metalloproteases. Feather protein hydrolysates showed an interesting antioxidant potential measured through radical-scavenging and Fe(3+)-reducing activities. CONCLUSION: This work represents an initial approach on the study of the biotechnological potential of proteases produced by Bacillus cytotoxicus. The results demonstrated the importance of continuous search for new biocatalysts with new characteristics and enzymes to be able to cope with the demands in the market. Springer Berlin Heidelberg 2021-07-22 /pmc/articles/PMC8298642/ /pubmed/34292436 http://dx.doi.org/10.1186/s43141-021-00207-1 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Cavello, Ivana Bezus, Brenda Cavalitto, Sebastián The keratinolytic bacteria Bacillus cytotoxicus as a source of novel proteases and feather protein hydrolysates with antioxidant activities |
title | The keratinolytic bacteria Bacillus cytotoxicus as a source of novel proteases and feather protein hydrolysates with antioxidant activities |
title_full | The keratinolytic bacteria Bacillus cytotoxicus as a source of novel proteases and feather protein hydrolysates with antioxidant activities |
title_fullStr | The keratinolytic bacteria Bacillus cytotoxicus as a source of novel proteases and feather protein hydrolysates with antioxidant activities |
title_full_unstemmed | The keratinolytic bacteria Bacillus cytotoxicus as a source of novel proteases and feather protein hydrolysates with antioxidant activities |
title_short | The keratinolytic bacteria Bacillus cytotoxicus as a source of novel proteases and feather protein hydrolysates with antioxidant activities |
title_sort | keratinolytic bacteria bacillus cytotoxicus as a source of novel proteases and feather protein hydrolysates with antioxidant activities |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8298642/ https://www.ncbi.nlm.nih.gov/pubmed/34292436 http://dx.doi.org/10.1186/s43141-021-00207-1 |
work_keys_str_mv | AT cavelloivana thekeratinolyticbacteriabacilluscytotoxicusasasourceofnovelproteasesandfeatherproteinhydrolysateswithantioxidantactivities AT bezusbrenda thekeratinolyticbacteriabacilluscytotoxicusasasourceofnovelproteasesandfeatherproteinhydrolysateswithantioxidantactivities AT cavalittosebastian thekeratinolyticbacteriabacilluscytotoxicusasasourceofnovelproteasesandfeatherproteinhydrolysateswithantioxidantactivities AT cavelloivana keratinolyticbacteriabacilluscytotoxicusasasourceofnovelproteasesandfeatherproteinhydrolysateswithantioxidantactivities AT bezusbrenda keratinolyticbacteriabacilluscytotoxicusasasourceofnovelproteasesandfeatherproteinhydrolysateswithantioxidantactivities AT cavalittosebastian keratinolyticbacteriabacilluscytotoxicusasasourceofnovelproteasesandfeatherproteinhydrolysateswithantioxidantactivities |