Cargando…
Machine learning based energy-free structure predictions of molecules, transition states, and solids
The computational prediction of atomistic structure is a long-standing problem in physics, chemistry, materials, and biology. Conventionally, force-fields or ab initio methods determine structure through energy minimization, which is either approximate or computationally demanding. This accuracy/cos...
Autores principales: | Lemm, Dominik, von Rudorff, Guido Falk, von Lilienfeld, O. Anatole |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8298673/ https://www.ncbi.nlm.nih.gov/pubmed/34294693 http://dx.doi.org/10.1038/s41467-021-24525-7 |
Ejemplares similares
-
Simplifying inverse materials design problems for fixed lattices with alchemical chirality
por: von Rudorff, Guido Falk, et al.
Publicado: (2021) -
Data enhanced Hammett-equation: reaction barriers in chemical space
por: Bragato, Marco, et al.
Publicado: (2020) -
Modeling of molecular atomization energies using machine learning
por: Rupp, Matthias, et al.
Publicado: (2012) -
Retrospective on a decade of machine learning for chemical discovery
por: von Lilienfeld, O. Anatole, et al.
Publicado: (2020) -
Ab Initio Machine Learning in Chemical Compound Space
por: Huang, Bing, et al.
Publicado: (2021)