Cargando…

Au@Ag Core@Shell Nanoparticles Synthesized with Rumex hymenosepalus as Antimicrobial Agent

In this work, we used a sequential method of synthesis for gold–silver bimetallic nanoparticles with core@shell structure (Au@AgNPs). Rumex hymenosepalus root extract (Rh), which presents high content in catechins and stilbenes, was used as reductor agent in nanoparticles synthesis. Size distributio...

Descripción completa

Detalles Bibliográficos
Autores principales: Villalobos-Noriega, Jesús Mauro Adolfo, Rodríguez-León, Ericka, Rodríguez-Beas, César, Larios-Rodríguez, Eduardo, Plascencia-Jatomea, Maribel, Martínez-Higuera, Aarón, Acuña-Campa, Heriberto, García-Galaz, Alfonso, Mora-Monroy, Roberto, Alvarez-Cirerol, Francisco Javier, Rodríguez-Vázquez, Blanca Esthela, Carillo-Torres, Roberto Carlos, Iñiguez-Palomares, Ramón A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8298724/
https://www.ncbi.nlm.nih.gov/pubmed/34292415
http://dx.doi.org/10.1186/s11671-021-03572-5
_version_ 1783726116304846848
author Villalobos-Noriega, Jesús Mauro Adolfo
Rodríguez-León, Ericka
Rodríguez-Beas, César
Larios-Rodríguez, Eduardo
Plascencia-Jatomea, Maribel
Martínez-Higuera, Aarón
Acuña-Campa, Heriberto
García-Galaz, Alfonso
Mora-Monroy, Roberto
Alvarez-Cirerol, Francisco Javier
Rodríguez-Vázquez, Blanca Esthela
Carillo-Torres, Roberto Carlos
Iñiguez-Palomares, Ramón A.
author_facet Villalobos-Noriega, Jesús Mauro Adolfo
Rodríguez-León, Ericka
Rodríguez-Beas, César
Larios-Rodríguez, Eduardo
Plascencia-Jatomea, Maribel
Martínez-Higuera, Aarón
Acuña-Campa, Heriberto
García-Galaz, Alfonso
Mora-Monroy, Roberto
Alvarez-Cirerol, Francisco Javier
Rodríguez-Vázquez, Blanca Esthela
Carillo-Torres, Roberto Carlos
Iñiguez-Palomares, Ramón A.
author_sort Villalobos-Noriega, Jesús Mauro Adolfo
collection PubMed
description In this work, we used a sequential method of synthesis for gold–silver bimetallic nanoparticles with core@shell structure (Au@AgNPs). Rumex hymenosepalus root extract (Rh), which presents high content in catechins and stilbenes, was used as reductor agent in nanoparticles synthesis. Size distribution obtained by Transmission Electron Microscopy (TEM) gives a mean diameter of 36 ± 11 nm for Au@AgNPs, 24 ± 4 nm for gold nanoparticles (AuNPs), and 13 ± 3 nm for silver nanoparticles (AgNPs). The geometrical shapes of NPs were principally quasi-spherical. The thickness of the silver shell over AuNPs is around 6 nm and covered by active biomolecules onto the surface. Nanoparticles characterization included high angle annular dark field images (HAADF) recorded with a scanning transmission electron microscope (STEM), Energy-Dispersive X-ray Spectroscopy (EDS), X-Ray Diffraction (XRD), UV–Vis Spectroscopy, Zeta Potential, and Dynamic Light Scattering (DLS). Fourier Transform Infrared Spectrometer (FTIR), and X-ray Photoelectron Spectroscopy (XPS) show that nanoparticles are stabilized by extract molecules. A growth kinetics study was performed using the Gompertz model for microorganisms exposed to nanomaterials. The results indicate that AgNPs and Au@AgNPs affect the lag phase and growth rate of Escherichia coli and Candida albicans in a dose-dependent manner, with a better response for Au@AgNPs SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s11671-021-03572-5.
format Online
Article
Text
id pubmed-8298724
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Springer US
record_format MEDLINE/PubMed
spelling pubmed-82987242021-08-12 Au@Ag Core@Shell Nanoparticles Synthesized with Rumex hymenosepalus as Antimicrobial Agent Villalobos-Noriega, Jesús Mauro Adolfo Rodríguez-León, Ericka Rodríguez-Beas, César Larios-Rodríguez, Eduardo Plascencia-Jatomea, Maribel Martínez-Higuera, Aarón Acuña-Campa, Heriberto García-Galaz, Alfonso Mora-Monroy, Roberto Alvarez-Cirerol, Francisco Javier Rodríguez-Vázquez, Blanca Esthela Carillo-Torres, Roberto Carlos Iñiguez-Palomares, Ramón A. Nanoscale Res Lett Nano Express In this work, we used a sequential method of synthesis for gold–silver bimetallic nanoparticles with core@shell structure (Au@AgNPs). Rumex hymenosepalus root extract (Rh), which presents high content in catechins and stilbenes, was used as reductor agent in nanoparticles synthesis. Size distribution obtained by Transmission Electron Microscopy (TEM) gives a mean diameter of 36 ± 11 nm for Au@AgNPs, 24 ± 4 nm for gold nanoparticles (AuNPs), and 13 ± 3 nm for silver nanoparticles (AgNPs). The geometrical shapes of NPs were principally quasi-spherical. The thickness of the silver shell over AuNPs is around 6 nm and covered by active biomolecules onto the surface. Nanoparticles characterization included high angle annular dark field images (HAADF) recorded with a scanning transmission electron microscope (STEM), Energy-Dispersive X-ray Spectroscopy (EDS), X-Ray Diffraction (XRD), UV–Vis Spectroscopy, Zeta Potential, and Dynamic Light Scattering (DLS). Fourier Transform Infrared Spectrometer (FTIR), and X-ray Photoelectron Spectroscopy (XPS) show that nanoparticles are stabilized by extract molecules. A growth kinetics study was performed using the Gompertz model for microorganisms exposed to nanomaterials. The results indicate that AgNPs and Au@AgNPs affect the lag phase and growth rate of Escherichia coli and Candida albicans in a dose-dependent manner, with a better response for Au@AgNPs SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s11671-021-03572-5. Springer US 2021-07-22 /pmc/articles/PMC8298724/ /pubmed/34292415 http://dx.doi.org/10.1186/s11671-021-03572-5 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Nano Express
Villalobos-Noriega, Jesús Mauro Adolfo
Rodríguez-León, Ericka
Rodríguez-Beas, César
Larios-Rodríguez, Eduardo
Plascencia-Jatomea, Maribel
Martínez-Higuera, Aarón
Acuña-Campa, Heriberto
García-Galaz, Alfonso
Mora-Monroy, Roberto
Alvarez-Cirerol, Francisco Javier
Rodríguez-Vázquez, Blanca Esthela
Carillo-Torres, Roberto Carlos
Iñiguez-Palomares, Ramón A.
Au@Ag Core@Shell Nanoparticles Synthesized with Rumex hymenosepalus as Antimicrobial Agent
title Au@Ag Core@Shell Nanoparticles Synthesized with Rumex hymenosepalus as Antimicrobial Agent
title_full Au@Ag Core@Shell Nanoparticles Synthesized with Rumex hymenosepalus as Antimicrobial Agent
title_fullStr Au@Ag Core@Shell Nanoparticles Synthesized with Rumex hymenosepalus as Antimicrobial Agent
title_full_unstemmed Au@Ag Core@Shell Nanoparticles Synthesized with Rumex hymenosepalus as Antimicrobial Agent
title_short Au@Ag Core@Shell Nanoparticles Synthesized with Rumex hymenosepalus as Antimicrobial Agent
title_sort au@ag core@shell nanoparticles synthesized with rumex hymenosepalus as antimicrobial agent
topic Nano Express
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8298724/
https://www.ncbi.nlm.nih.gov/pubmed/34292415
http://dx.doi.org/10.1186/s11671-021-03572-5
work_keys_str_mv AT villalobosnoriegajesusmauroadolfo auagcoreshellnanoparticlessynthesizedwithrumexhymenosepalusasantimicrobialagent
AT rodriguezleonericka auagcoreshellnanoparticlessynthesizedwithrumexhymenosepalusasantimicrobialagent
AT rodriguezbeascesar auagcoreshellnanoparticlessynthesizedwithrumexhymenosepalusasantimicrobialagent
AT lariosrodriguezeduardo auagcoreshellnanoparticlessynthesizedwithrumexhymenosepalusasantimicrobialagent
AT plascenciajatomeamaribel auagcoreshellnanoparticlessynthesizedwithrumexhymenosepalusasantimicrobialagent
AT martinezhigueraaaron auagcoreshellnanoparticlessynthesizedwithrumexhymenosepalusasantimicrobialagent
AT acunacampaheriberto auagcoreshellnanoparticlessynthesizedwithrumexhymenosepalusasantimicrobialagent
AT garciagalazalfonso auagcoreshellnanoparticlessynthesizedwithrumexhymenosepalusasantimicrobialagent
AT moramonroyroberto auagcoreshellnanoparticlessynthesizedwithrumexhymenosepalusasantimicrobialagent
AT alvarezcirerolfranciscojavier auagcoreshellnanoparticlessynthesizedwithrumexhymenosepalusasantimicrobialagent
AT rodriguezvazquezblancaesthela auagcoreshellnanoparticlessynthesizedwithrumexhymenosepalusasantimicrobialagent
AT carillotorresrobertocarlos auagcoreshellnanoparticlessynthesizedwithrumexhymenosepalusasantimicrobialagent
AT iniguezpalomaresramona auagcoreshellnanoparticlessynthesizedwithrumexhymenosepalusasantimicrobialagent