Cargando…
Au@Ag Core@Shell Nanoparticles Synthesized with Rumex hymenosepalus as Antimicrobial Agent
In this work, we used a sequential method of synthesis for gold–silver bimetallic nanoparticles with core@shell structure (Au@AgNPs). Rumex hymenosepalus root extract (Rh), which presents high content in catechins and stilbenes, was used as reductor agent in nanoparticles synthesis. Size distributio...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8298724/ https://www.ncbi.nlm.nih.gov/pubmed/34292415 http://dx.doi.org/10.1186/s11671-021-03572-5 |
_version_ | 1783726116304846848 |
---|---|
author | Villalobos-Noriega, Jesús Mauro Adolfo Rodríguez-León, Ericka Rodríguez-Beas, César Larios-Rodríguez, Eduardo Plascencia-Jatomea, Maribel Martínez-Higuera, Aarón Acuña-Campa, Heriberto García-Galaz, Alfonso Mora-Monroy, Roberto Alvarez-Cirerol, Francisco Javier Rodríguez-Vázquez, Blanca Esthela Carillo-Torres, Roberto Carlos Iñiguez-Palomares, Ramón A. |
author_facet | Villalobos-Noriega, Jesús Mauro Adolfo Rodríguez-León, Ericka Rodríguez-Beas, César Larios-Rodríguez, Eduardo Plascencia-Jatomea, Maribel Martínez-Higuera, Aarón Acuña-Campa, Heriberto García-Galaz, Alfonso Mora-Monroy, Roberto Alvarez-Cirerol, Francisco Javier Rodríguez-Vázquez, Blanca Esthela Carillo-Torres, Roberto Carlos Iñiguez-Palomares, Ramón A. |
author_sort | Villalobos-Noriega, Jesús Mauro Adolfo |
collection | PubMed |
description | In this work, we used a sequential method of synthesis for gold–silver bimetallic nanoparticles with core@shell structure (Au@AgNPs). Rumex hymenosepalus root extract (Rh), which presents high content in catechins and stilbenes, was used as reductor agent in nanoparticles synthesis. Size distribution obtained by Transmission Electron Microscopy (TEM) gives a mean diameter of 36 ± 11 nm for Au@AgNPs, 24 ± 4 nm for gold nanoparticles (AuNPs), and 13 ± 3 nm for silver nanoparticles (AgNPs). The geometrical shapes of NPs were principally quasi-spherical. The thickness of the silver shell over AuNPs is around 6 nm and covered by active biomolecules onto the surface. Nanoparticles characterization included high angle annular dark field images (HAADF) recorded with a scanning transmission electron microscope (STEM), Energy-Dispersive X-ray Spectroscopy (EDS), X-Ray Diffraction (XRD), UV–Vis Spectroscopy, Zeta Potential, and Dynamic Light Scattering (DLS). Fourier Transform Infrared Spectrometer (FTIR), and X-ray Photoelectron Spectroscopy (XPS) show that nanoparticles are stabilized by extract molecules. A growth kinetics study was performed using the Gompertz model for microorganisms exposed to nanomaterials. The results indicate that AgNPs and Au@AgNPs affect the lag phase and growth rate of Escherichia coli and Candida albicans in a dose-dependent manner, with a better response for Au@AgNPs SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s11671-021-03572-5. |
format | Online Article Text |
id | pubmed-8298724 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Springer US |
record_format | MEDLINE/PubMed |
spelling | pubmed-82987242021-08-12 Au@Ag Core@Shell Nanoparticles Synthesized with Rumex hymenosepalus as Antimicrobial Agent Villalobos-Noriega, Jesús Mauro Adolfo Rodríguez-León, Ericka Rodríguez-Beas, César Larios-Rodríguez, Eduardo Plascencia-Jatomea, Maribel Martínez-Higuera, Aarón Acuña-Campa, Heriberto García-Galaz, Alfonso Mora-Monroy, Roberto Alvarez-Cirerol, Francisco Javier Rodríguez-Vázquez, Blanca Esthela Carillo-Torres, Roberto Carlos Iñiguez-Palomares, Ramón A. Nanoscale Res Lett Nano Express In this work, we used a sequential method of synthesis for gold–silver bimetallic nanoparticles with core@shell structure (Au@AgNPs). Rumex hymenosepalus root extract (Rh), which presents high content in catechins and stilbenes, was used as reductor agent in nanoparticles synthesis. Size distribution obtained by Transmission Electron Microscopy (TEM) gives a mean diameter of 36 ± 11 nm for Au@AgNPs, 24 ± 4 nm for gold nanoparticles (AuNPs), and 13 ± 3 nm for silver nanoparticles (AgNPs). The geometrical shapes of NPs were principally quasi-spherical. The thickness of the silver shell over AuNPs is around 6 nm and covered by active biomolecules onto the surface. Nanoparticles characterization included high angle annular dark field images (HAADF) recorded with a scanning transmission electron microscope (STEM), Energy-Dispersive X-ray Spectroscopy (EDS), X-Ray Diffraction (XRD), UV–Vis Spectroscopy, Zeta Potential, and Dynamic Light Scattering (DLS). Fourier Transform Infrared Spectrometer (FTIR), and X-ray Photoelectron Spectroscopy (XPS) show that nanoparticles are stabilized by extract molecules. A growth kinetics study was performed using the Gompertz model for microorganisms exposed to nanomaterials. The results indicate that AgNPs and Au@AgNPs affect the lag phase and growth rate of Escherichia coli and Candida albicans in a dose-dependent manner, with a better response for Au@AgNPs SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s11671-021-03572-5. Springer US 2021-07-22 /pmc/articles/PMC8298724/ /pubmed/34292415 http://dx.doi.org/10.1186/s11671-021-03572-5 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Nano Express Villalobos-Noriega, Jesús Mauro Adolfo Rodríguez-León, Ericka Rodríguez-Beas, César Larios-Rodríguez, Eduardo Plascencia-Jatomea, Maribel Martínez-Higuera, Aarón Acuña-Campa, Heriberto García-Galaz, Alfonso Mora-Monroy, Roberto Alvarez-Cirerol, Francisco Javier Rodríguez-Vázquez, Blanca Esthela Carillo-Torres, Roberto Carlos Iñiguez-Palomares, Ramón A. Au@Ag Core@Shell Nanoparticles Synthesized with Rumex hymenosepalus as Antimicrobial Agent |
title | Au@Ag Core@Shell Nanoparticles Synthesized with Rumex hymenosepalus as Antimicrobial Agent |
title_full | Au@Ag Core@Shell Nanoparticles Synthesized with Rumex hymenosepalus as Antimicrobial Agent |
title_fullStr | Au@Ag Core@Shell Nanoparticles Synthesized with Rumex hymenosepalus as Antimicrobial Agent |
title_full_unstemmed | Au@Ag Core@Shell Nanoparticles Synthesized with Rumex hymenosepalus as Antimicrobial Agent |
title_short | Au@Ag Core@Shell Nanoparticles Synthesized with Rumex hymenosepalus as Antimicrobial Agent |
title_sort | au@ag core@shell nanoparticles synthesized with rumex hymenosepalus as antimicrobial agent |
topic | Nano Express |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8298724/ https://www.ncbi.nlm.nih.gov/pubmed/34292415 http://dx.doi.org/10.1186/s11671-021-03572-5 |
work_keys_str_mv | AT villalobosnoriegajesusmauroadolfo auagcoreshellnanoparticlessynthesizedwithrumexhymenosepalusasantimicrobialagent AT rodriguezleonericka auagcoreshellnanoparticlessynthesizedwithrumexhymenosepalusasantimicrobialagent AT rodriguezbeascesar auagcoreshellnanoparticlessynthesizedwithrumexhymenosepalusasantimicrobialagent AT lariosrodriguezeduardo auagcoreshellnanoparticlessynthesizedwithrumexhymenosepalusasantimicrobialagent AT plascenciajatomeamaribel auagcoreshellnanoparticlessynthesizedwithrumexhymenosepalusasantimicrobialagent AT martinezhigueraaaron auagcoreshellnanoparticlessynthesizedwithrumexhymenosepalusasantimicrobialagent AT acunacampaheriberto auagcoreshellnanoparticlessynthesizedwithrumexhymenosepalusasantimicrobialagent AT garciagalazalfonso auagcoreshellnanoparticlessynthesizedwithrumexhymenosepalusasantimicrobialagent AT moramonroyroberto auagcoreshellnanoparticlessynthesizedwithrumexhymenosepalusasantimicrobialagent AT alvarezcirerolfranciscojavier auagcoreshellnanoparticlessynthesizedwithrumexhymenosepalusasantimicrobialagent AT rodriguezvazquezblancaesthela auagcoreshellnanoparticlessynthesizedwithrumexhymenosepalusasantimicrobialagent AT carillotorresrobertocarlos auagcoreshellnanoparticlessynthesizedwithrumexhymenosepalusasantimicrobialagent AT iniguezpalomaresramona auagcoreshellnanoparticlessynthesizedwithrumexhymenosepalusasantimicrobialagent |