Cargando…
Semi-Supervised Support Vector Machine for Digital Twins Based Brain Image Fusion
The purpose is to explore the feature recognition, diagnosis, and forecasting performances of Semi-Supervised Support Vector Machines (S3VMs) for brain image fusion Digital Twins (DTs). Both unlabeled and labeled data are used regarding many unlabeled data in brain images, and semi supervised suppor...
Autores principales: | Wan, Zhibo, Dong, Youqiang, Yu, Zengchen, Lv, Haibin, Lv, Zhihan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8298822/ https://www.ncbi.nlm.nih.gov/pubmed/34305523 http://dx.doi.org/10.3389/fnins.2021.705323 |
Ejemplares similares
-
Multimodal Medical Supervised Image Fusion Method by CNN
por: Li, Yi, et al.
Publicado: (2021) -
Popular deep learning algorithms for disease prediction: a review
por: Yu, Zengchen, et al.
Publicado: (2022) -
Digital Twins in Industry 5.0
por: Lv, Zhihan
Publicado: (2023) -
Application of Digital Twins in multiple fields
por: Guo, Jinkang, et al.
Publicado: (2022) -
Integrating Semi-supervised and Supervised Learning Methods for Label Fusion in Multi-Atlas Based Image Segmentation
por: Zheng, Qiang, et al.
Publicado: (2018)