Cargando…

Soziale Ungleichheit in der regionalen Ausbreitung von SARS-CoV-2

BACKGROUND AND OBJECTIVE: It has not been adequately answered whether the spread of SARS-CoV‑2 is influenced by social and economic factors. Earlier studies generally looked at cumulative incidences up to the analysis date and did not take into account the development of the spread over time. This s...

Descripción completa

Detalles Bibliográficos
Autores principales: Dragano, Nico, Hoebel, Jens, Wachtler, Benjamin, Diercke, Michaela, Lunau, Thorsten, Wahrendorf, Morten
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8298974/
https://www.ncbi.nlm.nih.gov/pubmed/34297163
http://dx.doi.org/10.1007/s00103-021-03387-w
_version_ 1783726169125814272
author Dragano, Nico
Hoebel, Jens
Wachtler, Benjamin
Diercke, Michaela
Lunau, Thorsten
Wahrendorf, Morten
author_facet Dragano, Nico
Hoebel, Jens
Wachtler, Benjamin
Diercke, Michaela
Lunau, Thorsten
Wahrendorf, Morten
author_sort Dragano, Nico
collection PubMed
description BACKGROUND AND OBJECTIVE: It has not been adequately answered whether the spread of SARS-CoV‑2 is influenced by social and economic factors. Earlier studies generally looked at cumulative incidences up to the analysis date and did not take into account the development of the spread over time. This study therefore focuses on the regional dynamic of new infections and their relationship to socioeconomic factors. Based on the literature we describe the state of knowledge and present our own analyses of administrative data from Germany. METHODS: For this study, we examined regional progress data of reported COVID-19 cases for 401 cities and counties in Germany and associated them with socioeconomic characteristics of the areas. Age-standardized weekly incidence rates were calculated for the period from 3 February 2020 to 28 March 2021. Macroindicators were added from the INKAR database (e.g., income, employment rate, and crowding). RESULTS: While areas with higher incomes and lower poverty had higher incidences in the first and at the beginning of the second wave of the pandemic, they increased significantly in low-income regions from December 2020 on. Regions with a high proportion of gainfully employed people in general and especially those in the manufacturing sector had high incidences, especially in the second wave and at the beginning of the third wave. A low mean living space per inhabitant was related to higher incidence rates since November 2020. CONCLUSION: The regional temporal course of the pandemic correlates with social and economic indicators. A differentiated consideration of these differences could provide information on target group-specific protection and test strategies and help to identify social factors that generally favor infections. An English full-text version of this article is available at SpringerLink as Supplementary Information.
format Online
Article
Text
id pubmed-8298974
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-82989742021-07-23 Soziale Ungleichheit in der regionalen Ausbreitung von SARS-CoV-2 Dragano, Nico Hoebel, Jens Wachtler, Benjamin Diercke, Michaela Lunau, Thorsten Wahrendorf, Morten Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz Leitthema BACKGROUND AND OBJECTIVE: It has not been adequately answered whether the spread of SARS-CoV‑2 is influenced by social and economic factors. Earlier studies generally looked at cumulative incidences up to the analysis date and did not take into account the development of the spread over time. This study therefore focuses on the regional dynamic of new infections and their relationship to socioeconomic factors. Based on the literature we describe the state of knowledge and present our own analyses of administrative data from Germany. METHODS: For this study, we examined regional progress data of reported COVID-19 cases for 401 cities and counties in Germany and associated them with socioeconomic characteristics of the areas. Age-standardized weekly incidence rates were calculated for the period from 3 February 2020 to 28 March 2021. Macroindicators were added from the INKAR database (e.g., income, employment rate, and crowding). RESULTS: While areas with higher incomes and lower poverty had higher incidences in the first and at the beginning of the second wave of the pandemic, they increased significantly in low-income regions from December 2020 on. Regions with a high proportion of gainfully employed people in general and especially those in the manufacturing sector had high incidences, especially in the second wave and at the beginning of the third wave. A low mean living space per inhabitant was related to higher incidence rates since November 2020. CONCLUSION: The regional temporal course of the pandemic correlates with social and economic indicators. A differentiated consideration of these differences could provide information on target group-specific protection and test strategies and help to identify social factors that generally favor infections. An English full-text version of this article is available at SpringerLink as Supplementary Information. Springer Berlin Heidelberg 2021-07-23 2021 /pmc/articles/PMC8298974/ /pubmed/34297163 http://dx.doi.org/10.1007/s00103-021-03387-w Text en © The Author(s) 2021, korrigierte Publikation 2021 https://creativecommons.org/licenses/by/4.0/Open Access Dieser Artikel wird unter der Creative Commons Namensnennung 4.0 International Lizenz veröffentlicht, welche die Nutzung, Vervielfältigung, Bearbeitung, Verbreitung und Wiedergabe in jeglichem Medium und Format erlaubt, sofern Sie den/die ursprünglichen Autor(en) und die Quelle ordnungsgemäß nennen, einen Link zur Creative Commons Lizenz beifügen und angeben, ob Änderungen vorgenommen wurden. Die in diesem Artikel enthaltenen Bilder und sonstiges Drittmaterial unterliegen ebenfalls der genannten Creative Commons Lizenz, sofern sich aus der Abbildungslegende nichts anderes ergibt. Sofern das betreffende Material nicht unter der genannten Creative Commons Lizenz steht und die betreffende Handlung nicht nach gesetzlichen Vorschriften erlaubt ist, ist für die oben aufgeführten Weiterverwendungen des Materials die Einwilligung des jeweiligen Rechteinhabers einzuholen. Weitere Details zur Lizenz entnehmen Sie bitte der Lizenzinformation auf http://creativecommons.org/licenses/by/4.0/deed.de (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Leitthema
Dragano, Nico
Hoebel, Jens
Wachtler, Benjamin
Diercke, Michaela
Lunau, Thorsten
Wahrendorf, Morten
Soziale Ungleichheit in der regionalen Ausbreitung von SARS-CoV-2
title Soziale Ungleichheit in der regionalen Ausbreitung von SARS-CoV-2
title_full Soziale Ungleichheit in der regionalen Ausbreitung von SARS-CoV-2
title_fullStr Soziale Ungleichheit in der regionalen Ausbreitung von SARS-CoV-2
title_full_unstemmed Soziale Ungleichheit in der regionalen Ausbreitung von SARS-CoV-2
title_short Soziale Ungleichheit in der regionalen Ausbreitung von SARS-CoV-2
title_sort soziale ungleichheit in der regionalen ausbreitung von sars-cov-2
topic Leitthema
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8298974/
https://www.ncbi.nlm.nih.gov/pubmed/34297163
http://dx.doi.org/10.1007/s00103-021-03387-w
work_keys_str_mv AT draganonico sozialeungleichheitinderregionalenausbreitungvonsarscov2
AT hoebeljens sozialeungleichheitinderregionalenausbreitungvonsarscov2
AT wachtlerbenjamin sozialeungleichheitinderregionalenausbreitungvonsarscov2
AT dierckemichaela sozialeungleichheitinderregionalenausbreitungvonsarscov2
AT lunauthorsten sozialeungleichheitinderregionalenausbreitungvonsarscov2
AT wahrendorfmorten sozialeungleichheitinderregionalenausbreitungvonsarscov2