Cargando…

The Association Between STX1B Polymorphisms and Treatment Response in Patients With Epilepsy

Background: Epilepsy is a debilitating brain disease with complex inheritance and frequent treatment resistance. However, the role of STX1B single nucleotide polymorphisms (SNPs) in epilepsy treatment remains unknown. Objective: This study aimed to explore the genetic association of STX1B SNPs with...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Shitao, Zhou, Liang, He, Chenglu, Wang, Dan, Cai, Xuemei, Yu, Yanying, Chen, Liling, Lu, Di, Bian, Ligong, Du, Sunbing, Wu, Qian, Han, Yanbing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8299048/
https://www.ncbi.nlm.nih.gov/pubmed/34305610
http://dx.doi.org/10.3389/fphar.2021.701575
Descripción
Sumario:Background: Epilepsy is a debilitating brain disease with complex inheritance and frequent treatment resistance. However, the role of STX1B single nucleotide polymorphisms (SNPs) in epilepsy treatment remains unknown. Objective: This study aimed to explore the genetic association of STX1B SNPs with treatment response in patients with epilepsy in a Han Chinese population. Methods: We first examined the associations between STX1B SNPs and epilepsy in 1000 Han Chinese and the associations between STX1B SNPs and drug-resistant epilepsy in 450 subjects. Expression quantitative trait loci analysis was then conducted using 16 drug-resistant epileptic brain tissue samples and results from the BrainCloud database (http://eqtl.brainseq.org). Results: The allelic frequencies of rs140820592 were different between the epilepsy and control groups (p = 0.002) after Bonferroni correction. The rs140820592 was associated with significantly lower epilepsy risk among 1,000 subjects in the dominant model after adjusting for gender and age and Bonferroni correction (OR = 0.542, 95%CI = 0.358–0.819, p = 0.004). The rs140820592 also conferred significantly lower risk of drug-resistant epilepsy among 450 subjects using the same dominant model after adjusting for gender and age and Bonferroni correction (OR = 0.260, 95%CI = 0.103–0.653, p = 0.004). Expression quantitative trait loci analysis revealed that rs140820592 was associated with STX1B expression level in drug-resistant epileptic brain tissues (p = 0.012), and this result was further verified in the BrainCloud database (http://eqtl.brainseq.org) (p = 2.3214 × 10(–5)). Conclusion: The STX1B rs140820592 may influence the risks of epilepsy and drug-resistant epilepsy by regulating STX1B expression in brain tissues.