Cargando…
MegaLMM: Mega-scale linear mixed models for genomic predictions with thousands of traits
Large-scale phenotype data can enhance the power of genomic prediction in plant and animal breeding, as well as human genetics. However, the statistical foundation of multi-trait genomic prediction is based on the multivariate linear mixed effect model, a tool notorious for its fragility when applie...
Autores principales: | Runcie, Daniel E., Qu, Jiayi, Cheng, Hao, Crawford, Lorin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8299638/ https://www.ncbi.nlm.nih.gov/pubmed/34301310 http://dx.doi.org/10.1186/s13059-021-02416-w |
Ejemplares similares
-
Mega-scale Bayesian regression methods for genome-wide prediction and association studies with thousands of traits
por: Qu, Jiayi, et al.
Publicado: (2022) -
Mega grid for mega science
por: Walz, Martha
Publicado: (2006) -
Chromosome-scale mega-haplotypes enable digital karyotyping of cancer aneuploidy
por: Bell, John M., et al.
Publicado: (2017) -
Feature - Mega grid for mega science
Publicado: (2008) -
Fast and flexible linear mixed models for genome-wide genetics
por: Runcie, Daniel E., et al.
Publicado: (2019)