Cargando…
A systematic review of the applications of Expert Systems (ES) and machine learning (ML) in clinical urology
BACKGROUND: Testing a hypothesis for ‘factors-outcome effect’ is a common quest, but standard statistical regression analysis tools are rendered ineffective by data contaminated with too many noisy variables. Expert Systems (ES) can provide an alternative methodology in analysing data to identify va...
Autores principales: | Salem, Hesham, Soria, Daniele, Lund, Jonathan N., Awwad, Amir |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8299670/ https://www.ncbi.nlm.nih.gov/pubmed/34294092 http://dx.doi.org/10.1186/s12911-021-01585-9 |
Ejemplares similares
-
Hands-On Machine Learning with ML.NET
por: Capellman, Jarred
Publicado: (2020) -
Teraelektronvoltok és petabájtok égen-földön + ML és más állatfajták / Tera-electronvolts and petabytes in Heaven and Earth + ML and other animals
por: Levai, Peter, et al.
Publicado: (2018) -
ML.NET Revealed: Simple Tools for Applying Machine Learning to Your Applications
por: Mukherjee, Sudipta
Publicado: (2020) -
Exploring the application of machine learning to expert evaluation of research impact
por: Williams, Kate, et al.
Publicado: (2023) -
TrackML : a tracking Machine Learning challenge
por: Golling, Tobias, et al.
Publicado: (2019)