Cargando…
A Deep Neural Network Based Glottal Flow Model for Predicting Fluid-Structure Interactions during Voice Production
This paper proposes a machine-learning based reduced-order model that can provide fast and accurate prediction of the glottal flow during voice production. The model is based on the Bernoulli equation with a viscous loss term predicted by a deep neural network (DNN) model. The training data of the D...
Autores principales: | Zhang, Yang, Zheng, Xudong, Xue, Qian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8299989/ https://www.ncbi.nlm.nih.gov/pubmed/34306737 http://dx.doi.org/10.3390/app10020705 |
Ejemplares similares
-
Computational Modeling of Fluid–Structure–Acoustics Interaction during Voice Production
por: Jiang, Weili, et al.
Publicado: (2017) -
Glottal Closure in Women with No Voice Complaints or Laryngeal Disorders
por: Cielo, Carla Aparecida, et al.
Publicado: (2019) -
Effects of thyroplasty implant stiffness on glottal shape and voice acoustics
por: Cameron, Brian H., et al.
Publicado: (2019) -
Detection of extra pulses in synthesized glottal area waveforms of dysphonic voices
por: Aichinger, P., et al.
Publicado: (2019) -
Identification of glottal instants using electroglottographic signal for vulnerable cases of voicing
por: Mandal, Tanumay, et al.
Publicado: (2020)