Cargando…

The Relationship Between Visual Sensitivity and Eccentricity, Cone Density and Outer Segment Length in the Human Foveola

PURPOSE: The cellular topography of the human foveola, the central 1° diameter of the fovea, is strikingly non-uniform, with a steep increase of cone photoreceptor density and outer segment (OS) length toward its center. Here, we assessed to what extent the specific cellular organization of the fove...

Descripción completa

Detalles Bibliográficos
Autores principales: Domdei, Niklas, Reiniger, Jenny L., Holz, Frank G., Harmening, Wolf M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Association for Research in Vision and Ophthalmology 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8300048/
https://www.ncbi.nlm.nih.gov/pubmed/34289495
http://dx.doi.org/10.1167/iovs.62.9.31
Descripción
Sumario:PURPOSE: The cellular topography of the human foveola, the central 1° diameter of the fovea, is strikingly non-uniform, with a steep increase of cone photoreceptor density and outer segment (OS) length toward its center. Here, we assessed to what extent the specific cellular organization of the foveola of an individual is reflected in visual sensitivity and if sensitivity peaks at the preferred retinal locus of fixation (PRL). METHODS: Increment sensitivity to small-spot, cone-targeted visual stimuli (1 × 1 arcmin, 543-nm light) was recorded psychophysically in four human participants at 17 locations concentric within a 0.2° diameter on and around the PRL with adaptive optics scanning laser ophthalmoscopy-based microstimulation. Sensitivity test spots were aligned with cell-resolved maps of cone density and cone OS length. RESULTS: Peak sensitivity was at neither the PRL nor the topographical center of the cone mosaic. Within the central 0.1° diameter, a plateau-like sensitivity profile was observed. Cone density and maximal OS length differed significantly across participants, correlating with their peak sensitivity. Based on these results, biophysical simulation allowed to develop a model of visual sensitivity in the foveola, with distance from the PRL (eccentricity), cone density, and OS length as parameters. CONCLUSIONS: Small-spot sensitivity thresholds in healthy retinas will help to establish the range of normal foveolar function in cell-targeted vision testing. Because of the high reproducibility in replicate testing, threshold variability not explained by our model is assumed to be caused by individual cone and bipolar cell weighting at the specific target locations.