Cargando…
Deep Learning–Based Retinal Nerve Fiber Layer Thickness Measurement of Murine Eyes
PURPOSE: To design a robust and automated estimation method for measuring the retinal nerve fiber layer (RNFL) thickness using spectral domain optical coherence tomography (SD-OCT). METHODS: We developed a deep learning–based image segmentation network for automated segmentation of the RNFL in SD-OC...
Autores principales: | Ma, Rui, Liu, Yuan, Tao, Yudong, Alawa, Karam A., Shyu, Mei-Ling, Lee, Richard K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8300062/ https://www.ncbi.nlm.nih.gov/pubmed/34297789 http://dx.doi.org/10.1167/tvst.10.8.21 |
Ejemplares similares
-
Retinal Nerve Fiber Layer Thickness. The Beijing Eye Study 2011
por: Wang, Ya Xing, et al.
Publicado: (2013) -
Association between Retinal Nerve Fiber Layer Thickness and Eye Fatigue
por: Ayaki, Masahiko, et al.
Publicado: (2019) -
Thicknesses of the Fovea and Retinal Nerve Fiber Layer in Amblyopic and Normal Eyes in Children
por: Kee, Se-Young, et al.
Publicado: (2006) -
Retinal nerve fiber layer thickness in amblyopia
por: Parikh, Rajul, et al.
Publicado: (2022) -
Altered retinal nerve fiber layer thickness in children with allergic conjunctivitis: the Nanjing eye study
por: Chen, Danni, et al.
Publicado: (2022)