Cargando…

Spinal Locomotion in Cats Following Spinal Cord Injury: A Prospective Study

SIMPLE SUMMARY: Functional neurorehabilitation promotes neural reorganization by stimulating subjects without deep pain perception, leading to a faster recovery when compared to spontaneous recovery, and achieving fewer compensatory errors, or even deviations to neuropathic or adaptive pain pathways...

Descripción completa

Detalles Bibliográficos
Autores principales: Martins, Ângela, Silva, Cátia Marina, Gouveia, Débora, Cardoso, Ana, Coelho, Tiago, Gamboa, Óscar, Marcelino, Eduardo, Ferreira, António
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8300158/
https://www.ncbi.nlm.nih.gov/pubmed/34359122
http://dx.doi.org/10.3390/ani11071994
Descripción
Sumario:SIMPLE SUMMARY: Functional neurorehabilitation promotes neural reorganization by stimulating subjects without deep pain perception, leading to a faster recovery when compared to spontaneous recovery, and achieving fewer compensatory errors, or even deviations to neuropathic or adaptive pain pathways, such as spasticity. The present study demonstrates the importance of intensive and repetition-based functional neurorehabilitation, which is essential for subjects classified as grade 0 according to the modified Frankel scale. ABSTRACT: This article aimed to evaluate the safety and efficacy of intensive neurorehabilitation in paraplegic cats, with no deep pain perception (grade 0 on the modified Frankel scale), with more than three months of injury. Nine cats, admitted to the Arrábida Veterinary Hospital/Arrábida Animal Rehabilitation Center (CRAA), were subjected to a 12-week intensive functional neurorehabilitation protocol, based on ground and underwater treadmill locomotor training, electrostimulation, and kinesiotherapy exercises, aiming to obtain a faster recovery to ambulation and a modulated locomotor pattern of flexion/extension. Of the nine cats that were admitted in this study, 56% (n = 5) recovered from ambulation, 44% of which (4/9) did so through functional spinal locomotion by reflexes, while one achieved this through the recovery of deep pain perception. These results suggest that intensive neurorehabilitation can play an important role in ambulation recovery, allowing for a better quality of life and well-being, which may lead to a reduction in the number of euthanasia procedures performed on paraplegic animals.