Cargando…

Phytochemical screening, antimalarial activities, and genetic relationship of 16 indigenous Thai Asteraceae medicinal plants: A combinatorial approach using phylogeny and ethnobotanical bioprospecting in antimalarial drug discovery

Emergence of artemisinin resistance leads the people to discover the new candidate for antimalarial drug. Combinatorial phylogeny and ethnobotanical approach may be useful to minimize the expenditure and time in laboratory testing. Seven hundred and thirty-three ethnomedicinal plants were listed fro...

Descripción completa

Detalles Bibliográficos
Autores principales: Liana, Desy, Rungsihirunrat, Kanchana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wolters Kluwer - Medknow 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8300331/
https://www.ncbi.nlm.nih.gov/pubmed/34345604
http://dx.doi.org/10.4103/japtr.JAPTR_238_21
_version_ 1783726448386768896
author Liana, Desy
Rungsihirunrat, Kanchana
author_facet Liana, Desy
Rungsihirunrat, Kanchana
author_sort Liana, Desy
collection PubMed
description Emergence of artemisinin resistance leads the people to discover the new candidate for antimalarial drug. Combinatorial phylogeny and ethnobotanical approach may be useful to minimize the expenditure and time in laboratory testing. Seven hundred and thirty-three ethnomedicinal plants were listed from literature search. Obtained 340 internal transcribed spacer (ITS) sequences of plant list which met criteria were retrieved from GenBank NCBI and analyzed by MUSCLE and maximum likelihood phylogenetic test to generate the phylogenetic tree. Interactive phylogenetic tree was generated by Interactive Tree of Life (ITOL, https://itol.embl.de) and showed strong clustered pattern on Asteraceae. Afterward, 16 species of Asteraceae were selected to investigate the antimalarial activity, phytochemical, and genetic diversity. The presence of phytochemical was determined by standard method. DNA fluorescence-based assay was performed to determine the antimalarial activity against 3D7 Plasmodium falciparum. IC(50)μg/mL was used to categorize antimalarial activity. On the other hand, ITS universal primer was used to amplify and sequence the obtained extracted DNA of tested plant by cetyltrimethylammonium bromide method. Phylogenetic analyses were performed by MAFFT and RAxML with automatic bootstrapping. ITOL and Adobe Illustrator were used to generate interactive phylogenetic tree. All species tested showed the presence of phenolics and flavonoids, whereas alkaloids and terpenoids were shown vary among tested extracts. Among 16 species tested, 1 species exhibited good-moderate (Sphaeranthus indicus, IC(50)6.59 μg/mL), 4 weak (Artemisia chinensis, Artemisia vulgaris, Tridax procumbens, and Blumea balsamifera), and 3 very weak (Eupatorium capillifolium, Wedelia trilobata, and Vernonia cinerea). Generated phylogenetic tree by ITS data was able to separate the tested species into their tribal classification. In addition, new medicinal properties of A. chinensis were discovered. Combining phylogeny approach with ethnobotanical data is useful to narrow down the selection of antimalarial plants candidate.
format Online
Article
Text
id pubmed-8300331
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Wolters Kluwer - Medknow
record_format MEDLINE/PubMed
spelling pubmed-83003312021-08-02 Phytochemical screening, antimalarial activities, and genetic relationship of 16 indigenous Thai Asteraceae medicinal plants: A combinatorial approach using phylogeny and ethnobotanical bioprospecting in antimalarial drug discovery Liana, Desy Rungsihirunrat, Kanchana J Adv Pharm Technol Res Original Article Emergence of artemisinin resistance leads the people to discover the new candidate for antimalarial drug. Combinatorial phylogeny and ethnobotanical approach may be useful to minimize the expenditure and time in laboratory testing. Seven hundred and thirty-three ethnomedicinal plants were listed from literature search. Obtained 340 internal transcribed spacer (ITS) sequences of plant list which met criteria were retrieved from GenBank NCBI and analyzed by MUSCLE and maximum likelihood phylogenetic test to generate the phylogenetic tree. Interactive phylogenetic tree was generated by Interactive Tree of Life (ITOL, https://itol.embl.de) and showed strong clustered pattern on Asteraceae. Afterward, 16 species of Asteraceae were selected to investigate the antimalarial activity, phytochemical, and genetic diversity. The presence of phytochemical was determined by standard method. DNA fluorescence-based assay was performed to determine the antimalarial activity against 3D7 Plasmodium falciparum. IC(50)μg/mL was used to categorize antimalarial activity. On the other hand, ITS universal primer was used to amplify and sequence the obtained extracted DNA of tested plant by cetyltrimethylammonium bromide method. Phylogenetic analyses were performed by MAFFT and RAxML with automatic bootstrapping. ITOL and Adobe Illustrator were used to generate interactive phylogenetic tree. All species tested showed the presence of phenolics and flavonoids, whereas alkaloids and terpenoids were shown vary among tested extracts. Among 16 species tested, 1 species exhibited good-moderate (Sphaeranthus indicus, IC(50)6.59 μg/mL), 4 weak (Artemisia chinensis, Artemisia vulgaris, Tridax procumbens, and Blumea balsamifera), and 3 very weak (Eupatorium capillifolium, Wedelia trilobata, and Vernonia cinerea). Generated phylogenetic tree by ITS data was able to separate the tested species into their tribal classification. In addition, new medicinal properties of A. chinensis were discovered. Combining phylogeny approach with ethnobotanical data is useful to narrow down the selection of antimalarial plants candidate. Wolters Kluwer - Medknow 2021 2021-07-16 /pmc/articles/PMC8300331/ /pubmed/34345604 http://dx.doi.org/10.4103/japtr.JAPTR_238_21 Text en Copyright: © 2021 Journal of Advanced Pharmaceutical Technology & Research https://creativecommons.org/licenses/by-nc-sa/4.0/This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.
spellingShingle Original Article
Liana, Desy
Rungsihirunrat, Kanchana
Phytochemical screening, antimalarial activities, and genetic relationship of 16 indigenous Thai Asteraceae medicinal plants: A combinatorial approach using phylogeny and ethnobotanical bioprospecting in antimalarial drug discovery
title Phytochemical screening, antimalarial activities, and genetic relationship of 16 indigenous Thai Asteraceae medicinal plants: A combinatorial approach using phylogeny and ethnobotanical bioprospecting in antimalarial drug discovery
title_full Phytochemical screening, antimalarial activities, and genetic relationship of 16 indigenous Thai Asteraceae medicinal plants: A combinatorial approach using phylogeny and ethnobotanical bioprospecting in antimalarial drug discovery
title_fullStr Phytochemical screening, antimalarial activities, and genetic relationship of 16 indigenous Thai Asteraceae medicinal plants: A combinatorial approach using phylogeny and ethnobotanical bioprospecting in antimalarial drug discovery
title_full_unstemmed Phytochemical screening, antimalarial activities, and genetic relationship of 16 indigenous Thai Asteraceae medicinal plants: A combinatorial approach using phylogeny and ethnobotanical bioprospecting in antimalarial drug discovery
title_short Phytochemical screening, antimalarial activities, and genetic relationship of 16 indigenous Thai Asteraceae medicinal plants: A combinatorial approach using phylogeny and ethnobotanical bioprospecting in antimalarial drug discovery
title_sort phytochemical screening, antimalarial activities, and genetic relationship of 16 indigenous thai asteraceae medicinal plants: a combinatorial approach using phylogeny and ethnobotanical bioprospecting in antimalarial drug discovery
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8300331/
https://www.ncbi.nlm.nih.gov/pubmed/34345604
http://dx.doi.org/10.4103/japtr.JAPTR_238_21
work_keys_str_mv AT lianadesy phytochemicalscreeningantimalarialactivitiesandgeneticrelationshipof16indigenousthaiasteraceaemedicinalplantsacombinatorialapproachusingphylogenyandethnobotanicalbioprospectinginantimalarialdrugdiscovery
AT rungsihirunratkanchana phytochemicalscreeningantimalarialactivitiesandgeneticrelationshipof16indigenousthaiasteraceaemedicinalplantsacombinatorialapproachusingphylogenyandethnobotanicalbioprospectinginantimalarialdrugdiscovery