Cargando…
causalizeR: a text mining algorithm to identify causal relationships in scientific literature
Complex interactions among multiple abiotic and biotic drivers result in rapid changes in ecosystems worldwide. Predicting how specific interactions can cause ripple effects potentially resulting in abrupt shifts in ecosystems is of high relevance to policymakers, but difficult to quantify using dat...
Autores principales: | Ancin-Murguzur, Francisco J., Hausner, Vera H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8300496/ https://www.ncbi.nlm.nih.gov/pubmed/34322328 http://dx.doi.org/10.7717/peerj.11850 |
Ejemplares similares
-
Mendelian randomization investigation identified the causal relationship between body fat indexes and the risk of bladder cancer
por: Wan, Bangbei, et al.
Publicado: (2023) -
On causality of extreme events
por: Zanin, Massimiliano
Publicado: (2016) -
Impact of the COVID-19 pandemic on human-nature relations in a remote nature-based tourism destination
por: Mul, Evert, et al.
Publicado: (2022) -
Putative causal inference for the relationship between obesity and sex hormones in males: a bidirectional Mendelian randomization study
por: Wan, Bangbei, et al.
Publicado: (2023) -
Machine Learning for Causal Inference in Biological Networks: Perspectives of This Challenge
por: Lecca, Paola
Publicado: (2021)