Cargando…

Elastic waves in particulate glass-rubber mixtures

We investigate the propagation of waves in dense static granular packings made of soft and stiff particles subjected to hydrostatic stress. Physical experiments in a triaxial cell equipped with broadband piezoelectric wave transducers have been performed at ultrasound frequencies. The time of flight...

Descripción completa

Detalles Bibliográficos
Autores principales: Taghizadeh, Kianoosh, Steeb, Holger, Luding, Stefan, Magnanimo, Vanessa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society Publishing 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8300599/
https://www.ncbi.nlm.nih.gov/pubmed/35153557
http://dx.doi.org/10.1098/rspa.2020.0834
Descripción
Sumario:We investigate the propagation of waves in dense static granular packings made of soft and stiff particles subjected to hydrostatic stress. Physical experiments in a triaxial cell equipped with broadband piezoelectric wave transducers have been performed at ultrasound frequencies. The time of flight is measured in order to study the combined effect of applied stress and rubber content on the elastic properties of the mixtures. The bulk stiffness deduced from the wave speed is nonlinear and non-monotonic with the increasing percentage of rubber with a more prominent effect at higher pressures. Moreover, in the frequency domain, a spectral analysis gives insights on the transition from a glass- to a rubber-dominated regime and the influence of rubber particles on the energy dissipation. Mixtures with rubber content below 30% show enhanced damping properties, associated with slightly higher stiffness and lighter weight.