Cargando…
Covid-19: predictive mathematical formulae for the number of deaths during lockdown and possible scenarios for the post-lockdown period
In a recent article, we introduced two novel mathematical expressions and a deep learning algorithm for characterizing the dynamics of the number of reported infected cases with SARS-CoV-2. Here, we show that such formulae can also be used for determining the time evolution of the associated number...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8300658/ https://www.ncbi.nlm.nih.gov/pubmed/35153555 http://dx.doi.org/10.1098/rspa.2020.0745 |
Sumario: | In a recent article, we introduced two novel mathematical expressions and a deep learning algorithm for characterizing the dynamics of the number of reported infected cases with SARS-CoV-2. Here, we show that such formulae can also be used for determining the time evolution of the associated number of deaths: for the epidemics in Spain, Germany, Italy and the UK, the parameters defining these formulae were computed using data up to 1 May 2020, a period of lockdown for these countries; then, the predictions of the formulae were compared with the data for the following 122 days, namely until 1 September. These comparisons, in addition to demonstrating the remarkable predictive capacity of our simple formulae, also show that for a rather long time the easing of the lockdown measures did not affect the number of deaths. The importance of these results regarding predictions of the number of Covid-19 deaths during the post-lockdown period is discussed. |
---|