Cargando…
Melatonin Ameliorates the Toxicity Induced by Deoxynivalenol in Murine Ovary Granulosa Cells by Antioxidative and Anti-Inflammatory Effects
Melatonin is an important endogenous hormone that shows antioxidant functions and pleiotropic effects, playing a crucial role in animal reproduction. Ovary granulosa cells (GCs) surround the oocyte, which play an important role in regulating oocytes development. Deoxynivalenol (DON) is a common fusa...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8300713/ https://www.ncbi.nlm.nih.gov/pubmed/34209652 http://dx.doi.org/10.3390/antiox10071045 |
_version_ | 1783726513581981696 |
---|---|
author | Fan, Hairui Wang, Shiqin Wang, Haifei Sun, Mingan Wu, Shenglong Bao, Wenbin |
author_facet | Fan, Hairui Wang, Shiqin Wang, Haifei Sun, Mingan Wu, Shenglong Bao, Wenbin |
author_sort | Fan, Hairui |
collection | PubMed |
description | Melatonin is an important endogenous hormone that shows antioxidant functions and pleiotropic effects, playing a crucial role in animal reproduction. Ovary granulosa cells (GCs) surround the oocyte, which play an important role in regulating oocytes development. Deoxynivalenol (DON) is a common fusarium mycotoxin contaminant of feedstuff and food, posing a serious threat to human and animal reproductive systems. Herein, murine ovary GCs were studied as a reproduction cell model, aimed to assess the protective effect of melatonin on DON-induced toxicity in murine ovary GCs. The results showed that DON adversely affected the viability and growth of murine ovary GCs and increased the apoptosis rate, while melatonin administration ameliorated these toxic effects. We further reveal that DON exposure increased the intracellular reactive oxygen species level, reduced the mitochondrial membrane potential and ATP, and upregulated Tnfα (tumor necrosis factor α), Il6 (interleukin 6), and Il1β (interleukin 1 β) gene expression. Moreover, DON exposure downregulated reproductive hormone gene expression and significantly increased nuclear factor kappa B (p65) activation and mitogen-activated protein kinase phosphorylation. Melatonin treatment attenuated all these effects, suggesting that melatonin protects GCs from the adverse effects of DON by ameliorating oxidative stress, mitochondrial dysfunction, and inflammation. Overall, these results reveal the mechanisms of DON and melatonin in GCs and provide a theoretical basis for melatonin as a drug to improve mycotoxin contamination. |
format | Online Article Text |
id | pubmed-8300713 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-83007132021-07-24 Melatonin Ameliorates the Toxicity Induced by Deoxynivalenol in Murine Ovary Granulosa Cells by Antioxidative and Anti-Inflammatory Effects Fan, Hairui Wang, Shiqin Wang, Haifei Sun, Mingan Wu, Shenglong Bao, Wenbin Antioxidants (Basel) Article Melatonin is an important endogenous hormone that shows antioxidant functions and pleiotropic effects, playing a crucial role in animal reproduction. Ovary granulosa cells (GCs) surround the oocyte, which play an important role in regulating oocytes development. Deoxynivalenol (DON) is a common fusarium mycotoxin contaminant of feedstuff and food, posing a serious threat to human and animal reproductive systems. Herein, murine ovary GCs were studied as a reproduction cell model, aimed to assess the protective effect of melatonin on DON-induced toxicity in murine ovary GCs. The results showed that DON adversely affected the viability and growth of murine ovary GCs and increased the apoptosis rate, while melatonin administration ameliorated these toxic effects. We further reveal that DON exposure increased the intracellular reactive oxygen species level, reduced the mitochondrial membrane potential and ATP, and upregulated Tnfα (tumor necrosis factor α), Il6 (interleukin 6), and Il1β (interleukin 1 β) gene expression. Moreover, DON exposure downregulated reproductive hormone gene expression and significantly increased nuclear factor kappa B (p65) activation and mitogen-activated protein kinase phosphorylation. Melatonin treatment attenuated all these effects, suggesting that melatonin protects GCs from the adverse effects of DON by ameliorating oxidative stress, mitochondrial dysfunction, and inflammation. Overall, these results reveal the mechanisms of DON and melatonin in GCs and provide a theoretical basis for melatonin as a drug to improve mycotoxin contamination. MDPI 2021-06-29 /pmc/articles/PMC8300713/ /pubmed/34209652 http://dx.doi.org/10.3390/antiox10071045 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Fan, Hairui Wang, Shiqin Wang, Haifei Sun, Mingan Wu, Shenglong Bao, Wenbin Melatonin Ameliorates the Toxicity Induced by Deoxynivalenol in Murine Ovary Granulosa Cells by Antioxidative and Anti-Inflammatory Effects |
title | Melatonin Ameliorates the Toxicity Induced by Deoxynivalenol in Murine Ovary Granulosa Cells by Antioxidative and Anti-Inflammatory Effects |
title_full | Melatonin Ameliorates the Toxicity Induced by Deoxynivalenol in Murine Ovary Granulosa Cells by Antioxidative and Anti-Inflammatory Effects |
title_fullStr | Melatonin Ameliorates the Toxicity Induced by Deoxynivalenol in Murine Ovary Granulosa Cells by Antioxidative and Anti-Inflammatory Effects |
title_full_unstemmed | Melatonin Ameliorates the Toxicity Induced by Deoxynivalenol in Murine Ovary Granulosa Cells by Antioxidative and Anti-Inflammatory Effects |
title_short | Melatonin Ameliorates the Toxicity Induced by Deoxynivalenol in Murine Ovary Granulosa Cells by Antioxidative and Anti-Inflammatory Effects |
title_sort | melatonin ameliorates the toxicity induced by deoxynivalenol in murine ovary granulosa cells by antioxidative and anti-inflammatory effects |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8300713/ https://www.ncbi.nlm.nih.gov/pubmed/34209652 http://dx.doi.org/10.3390/antiox10071045 |
work_keys_str_mv | AT fanhairui melatoninamelioratesthetoxicityinducedbydeoxynivalenolinmurineovarygranulosacellsbyantioxidativeandantiinflammatoryeffects AT wangshiqin melatoninamelioratesthetoxicityinducedbydeoxynivalenolinmurineovarygranulosacellsbyantioxidativeandantiinflammatoryeffects AT wanghaifei melatoninamelioratesthetoxicityinducedbydeoxynivalenolinmurineovarygranulosacellsbyantioxidativeandantiinflammatoryeffects AT sunmingan melatoninamelioratesthetoxicityinducedbydeoxynivalenolinmurineovarygranulosacellsbyantioxidativeandantiinflammatoryeffects AT wushenglong melatoninamelioratesthetoxicityinducedbydeoxynivalenolinmurineovarygranulosacellsbyantioxidativeandantiinflammatoryeffects AT baowenbin melatoninamelioratesthetoxicityinducedbydeoxynivalenolinmurineovarygranulosacellsbyantioxidativeandantiinflammatoryeffects |