Cargando…
Palmitoylethanolamide/Baicalein Regulates the Androgen Receptor Signaling and NF-κB/Nrf2 Pathways in Benign Prostatic Hyperplasia
Benign prostatic hyperplasia (BPH) is the most common benign tumor in males. Androgen/androgen receptor (AR) signaling plays a key role in the development of BPH; its alterations cause an imbalance between prostate cell growth and apoptosis. Furthermore, chronic inflammation and oxidative stress, wh...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8300753/ https://www.ncbi.nlm.nih.gov/pubmed/34202665 http://dx.doi.org/10.3390/antiox10071014 |
_version_ | 1783726523187986432 |
---|---|
author | D’Amico, Ramona Genovese, Tiziana Cordaro, Marika Siracusa, Rosalba Gugliandolo, Enrico Peritore, Alessio Filippo Interdonato, Livia Crupi, Rosalia Cuzzocrea, Salvatore Di Paola, Rosanna Fusco, Roberta Impellizzeri, Daniela |
author_facet | D’Amico, Ramona Genovese, Tiziana Cordaro, Marika Siracusa, Rosalba Gugliandolo, Enrico Peritore, Alessio Filippo Interdonato, Livia Crupi, Rosalia Cuzzocrea, Salvatore Di Paola, Rosanna Fusco, Roberta Impellizzeri, Daniela |
author_sort | D’Amico, Ramona |
collection | PubMed |
description | Benign prostatic hyperplasia (BPH) is the most common benign tumor in males. Androgen/androgen receptor (AR) signaling plays a key role in the development of BPH; its alterations cause an imbalance between prostate cell growth and apoptosis. Furthermore, chronic inflammation and oxidative stress, which are common conditions in BPH, contribute to disrupting the homeostasis between cell proliferation and cell death. With this background in mind, we investigated the effect of ultramicronized palmitoylethanolamide (um-PEA), baicalein (Baic) and co-ultramicronized um-PEA/Baic in a fixed ratio of 10:1 in an experimental model of BPH. BPH was induced in rats by daily administration of testosterone propionate (3 mg/kg) for 14 days. Baic (1 mg/kg), um-PEA (9 mg/kg) and um-PEA/Baic (10 mg/kg) were administered orally every day for 14 days. This protocol led to alterations in prostate morphology and increased levels of dihydrotestosterone (DHT) and of androgen receptor and 5α-reductase expression. Moreover, testosterone injections induced a significant increase in markers of inflammation, apoptosis and oxidative stress. Our results show that um-PEA/Baic is capable of decreasing prostate weight and DHT production in BPH-induced rats, as well as being able to modulate apoptotic and inflammatory pathways and oxidative stress. These effects were most likely related to the synergy between the anti-inflammatory properties of um-PEA and the antioxidant effects of Baic. These results support the view that um-PEA/Baic should be further studied as a potent candidate for the management of BPH. |
format | Online Article Text |
id | pubmed-8300753 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-83007532021-07-24 Palmitoylethanolamide/Baicalein Regulates the Androgen Receptor Signaling and NF-κB/Nrf2 Pathways in Benign Prostatic Hyperplasia D’Amico, Ramona Genovese, Tiziana Cordaro, Marika Siracusa, Rosalba Gugliandolo, Enrico Peritore, Alessio Filippo Interdonato, Livia Crupi, Rosalia Cuzzocrea, Salvatore Di Paola, Rosanna Fusco, Roberta Impellizzeri, Daniela Antioxidants (Basel) Article Benign prostatic hyperplasia (BPH) is the most common benign tumor in males. Androgen/androgen receptor (AR) signaling plays a key role in the development of BPH; its alterations cause an imbalance between prostate cell growth and apoptosis. Furthermore, chronic inflammation and oxidative stress, which are common conditions in BPH, contribute to disrupting the homeostasis between cell proliferation and cell death. With this background in mind, we investigated the effect of ultramicronized palmitoylethanolamide (um-PEA), baicalein (Baic) and co-ultramicronized um-PEA/Baic in a fixed ratio of 10:1 in an experimental model of BPH. BPH was induced in rats by daily administration of testosterone propionate (3 mg/kg) for 14 days. Baic (1 mg/kg), um-PEA (9 mg/kg) and um-PEA/Baic (10 mg/kg) were administered orally every day for 14 days. This protocol led to alterations in prostate morphology and increased levels of dihydrotestosterone (DHT) and of androgen receptor and 5α-reductase expression. Moreover, testosterone injections induced a significant increase in markers of inflammation, apoptosis and oxidative stress. Our results show that um-PEA/Baic is capable of decreasing prostate weight and DHT production in BPH-induced rats, as well as being able to modulate apoptotic and inflammatory pathways and oxidative stress. These effects were most likely related to the synergy between the anti-inflammatory properties of um-PEA and the antioxidant effects of Baic. These results support the view that um-PEA/Baic should be further studied as a potent candidate for the management of BPH. MDPI 2021-06-24 /pmc/articles/PMC8300753/ /pubmed/34202665 http://dx.doi.org/10.3390/antiox10071014 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article D’Amico, Ramona Genovese, Tiziana Cordaro, Marika Siracusa, Rosalba Gugliandolo, Enrico Peritore, Alessio Filippo Interdonato, Livia Crupi, Rosalia Cuzzocrea, Salvatore Di Paola, Rosanna Fusco, Roberta Impellizzeri, Daniela Palmitoylethanolamide/Baicalein Regulates the Androgen Receptor Signaling and NF-κB/Nrf2 Pathways in Benign Prostatic Hyperplasia |
title | Palmitoylethanolamide/Baicalein Regulates the Androgen Receptor Signaling and NF-κB/Nrf2 Pathways in Benign Prostatic Hyperplasia |
title_full | Palmitoylethanolamide/Baicalein Regulates the Androgen Receptor Signaling and NF-κB/Nrf2 Pathways in Benign Prostatic Hyperplasia |
title_fullStr | Palmitoylethanolamide/Baicalein Regulates the Androgen Receptor Signaling and NF-κB/Nrf2 Pathways in Benign Prostatic Hyperplasia |
title_full_unstemmed | Palmitoylethanolamide/Baicalein Regulates the Androgen Receptor Signaling and NF-κB/Nrf2 Pathways in Benign Prostatic Hyperplasia |
title_short | Palmitoylethanolamide/Baicalein Regulates the Androgen Receptor Signaling and NF-κB/Nrf2 Pathways in Benign Prostatic Hyperplasia |
title_sort | palmitoylethanolamide/baicalein regulates the androgen receptor signaling and nf-κb/nrf2 pathways in benign prostatic hyperplasia |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8300753/ https://www.ncbi.nlm.nih.gov/pubmed/34202665 http://dx.doi.org/10.3390/antiox10071014 |
work_keys_str_mv | AT damicoramona palmitoylethanolamidebaicaleinregulatestheandrogenreceptorsignalingandnfkbnrf2pathwaysinbenignprostatichyperplasia AT genovesetiziana palmitoylethanolamidebaicaleinregulatestheandrogenreceptorsignalingandnfkbnrf2pathwaysinbenignprostatichyperplasia AT cordaromarika palmitoylethanolamidebaicaleinregulatestheandrogenreceptorsignalingandnfkbnrf2pathwaysinbenignprostatichyperplasia AT siracusarosalba palmitoylethanolamidebaicaleinregulatestheandrogenreceptorsignalingandnfkbnrf2pathwaysinbenignprostatichyperplasia AT gugliandoloenrico palmitoylethanolamidebaicaleinregulatestheandrogenreceptorsignalingandnfkbnrf2pathwaysinbenignprostatichyperplasia AT peritorealessiofilippo palmitoylethanolamidebaicaleinregulatestheandrogenreceptorsignalingandnfkbnrf2pathwaysinbenignprostatichyperplasia AT interdonatolivia palmitoylethanolamidebaicaleinregulatestheandrogenreceptorsignalingandnfkbnrf2pathwaysinbenignprostatichyperplasia AT crupirosalia palmitoylethanolamidebaicaleinregulatestheandrogenreceptorsignalingandnfkbnrf2pathwaysinbenignprostatichyperplasia AT cuzzocreasalvatore palmitoylethanolamidebaicaleinregulatestheandrogenreceptorsignalingandnfkbnrf2pathwaysinbenignprostatichyperplasia AT dipaolarosanna palmitoylethanolamidebaicaleinregulatestheandrogenreceptorsignalingandnfkbnrf2pathwaysinbenignprostatichyperplasia AT fuscoroberta palmitoylethanolamidebaicaleinregulatestheandrogenreceptorsignalingandnfkbnrf2pathwaysinbenignprostatichyperplasia AT impellizzeridaniela palmitoylethanolamidebaicaleinregulatestheandrogenreceptorsignalingandnfkbnrf2pathwaysinbenignprostatichyperplasia |