Cargando…
A Gut-Ex-Vivo System to Study Gut Inflammation Associated to Inflammatory Bowel Disease (IBD)
SIMPLE SUMMARY: Inflammatory Bowel Disease (IBD) is a complex and multifactorial systemic disease of the gastrointestinal tract, characterized by chronic inflammation, thus resulting in tissue damage and, occasionally, in cancer development. Although the precise origin is still elusive, it is widely...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8301106/ https://www.ncbi.nlm.nih.gov/pubmed/34209277 http://dx.doi.org/10.3390/biology10070605 |
Sumario: | SIMPLE SUMMARY: Inflammatory Bowel Disease (IBD) is a complex and multifactorial systemic disease of the gastrointestinal tract, characterized by chronic inflammation, thus resulting in tissue damage and, occasionally, in cancer development. Although the precise origin is still elusive, it is widely considered a disease of modern society, caused by a complex interaction between environment, genetic, immune system, and gut microflora (microbiota). Potentially affected by all the above-mentioned variables, which interplay are highly heterogeneous, the disease appears to be patient-specific. The latter phenomenon, together with the uncertain origin, also contributes to the lack of optimal clinical treatment of these patients. Therefore, the development of appropriate models is crucial to push the research forward and to define new valuable therapeutic approaches. Although tissue biopsies and/or animal models represent the best models to study IBD onset, progression, and clinical interventions, they are both affected by limitations such as invasiveness, cost- and time-consuming, and ethical issues such as animal suffering. Here we propose a novel approach based on the cultivation of mouse tissues (colon) in an ex vivo microfluidic device (Gut-Ex-Vivo System, GEVS) to study IBD. We demonstrate that explanted mouse tissues cultivated in our GEVS can be appropriately stimulated to recapitulate the onset of the disease, in a time- and cost- effective manner. ABSTRACT: Inflammatory bowel disease (IBD) is a complex, chronic, and dysregulated inflammatory condition which etiology is still largely unknown. Its prognosis and disease progression are highly variable and unpredictable. IBD comprises several heterogeneous inflammatory conditions ranging from Ulcerative Colitis (UC) to Crohn’s Disease (CD). Importantly, a definite, well-established, and effective clinical treatment for these pathologies is still lacking. The urgent need for treatment is further supported by the notion that patients affected by UC or CD are also at risk of developing cancer. Therefore, a deeper understanding of the molecular mechanisms at the basis of IBD development and progression is strictly required to design new and efficient therapeutic regimens. Although the development of animal models has undoubtedly facilitated the study of IBD, such in vivo approaches are often expensive and time-consuming. Here we propose an organ ex vivo culture (Gut-Ex-Vivo system, GEVS) based on colon from Balb/c mice cultivated in a dynamic condition, able to model the biochemical and morphological features of the mouse models exposed to DNBS (5–12 days), in 5 h. Indeed, upon DNBS exposure, we observed a dose-dependent: (i) up-regulation of the stress-related protein transglutaminase 2 (TG2); (ii) increased intestinal permeability associated with deregulated tight junction protein expression; (iii) increased expression of pro-inflammatory cytokines, such as TNFα, IFNγ, IL1β, IL6, IL17A, and IL15; (iv) down-regulation of the anti-inflammatory IL10; and (v) induction of Endoplasmic Reticulum stress (ER stress), all markers of IBD. Altogether, these data indicate that the proposed model can be efficiently used to study the pathogenesis of IBD, in a time- and cost-effective manner. |
---|