Cargando…

Life-On-Hold: Lanthanoids Rapidly Induce a Reversible Ametabolic State in Mammalian Cells

SIMPLE SUMMARY: We found that incubation with a solution containing ~50 mM neodymium (one of the rare-earth elements, REE) induces a rapid of active metabolism in mammalian cells. We have named this state REEbernation and found that the process involves a rapid replacement of calcium with neodymium...

Descripción completa

Detalles Bibliográficos
Autores principales: Subbot, Anastasia, Kondratieva, Sabina, Novikov, Ivan, Gogoleva, Natalia, Kozlova, Olga, Chebotar, Igor, Gazizova, Guzel, Ryabova, Anastasia, Vorontsova, Maria, Kikawada, Takahiro, Shagimardanova, Elena, Gusev, Oleg
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8301128/
https://www.ncbi.nlm.nih.gov/pubmed/34209345
http://dx.doi.org/10.3390/biology10070607
Descripción
Sumario:SIMPLE SUMMARY: We found that incubation with a solution containing ~50 mM neodymium (one of the rare-earth elements, REE) induces a rapid of active metabolism in mammalian cells. We have named this state REEbernation and found that the process involves a rapid replacement of calcium with neodymium in membranes and organelles of a cell, allowing it to maintain its shape and membrane integrity under extreme conditions, including vacuum. Furthermore, phosphate exchange is blocked because of non-dissolvable neodymium salts formation, which “discharged” the cell. We also showed that REEbernation is characterized by instant shutting down RNA transcriptional activity in the cells, providing an intriguing opportunity to study a snapshot of gene expression at a given time point. Finally, we found that the REEbernation state is reversible, and we could restore the metabolism and proliferation capacity of the cells. The REEbernation provides a new method to reversibly place a cell into “on-hold” mode, opening opportunities to develop protocols for biological samples fixation with a minimum effect on the omics profile for biomedical needs. ABSTRACT: Until now, the ability to reversibly halt cellular processes has been limited to cryopreservation and several forms of anabiosis observed in living organisms. In this paper we show that incubation of living cells with a solution containing ~50 mM neodymium induces a rapid shutdown of intracellular organelle movement and all other evidence of active metabolism. We have named this state REEbernation (derived from the terms REE (rare earth elements) and hibernation) and found that the process involves a rapid replacement of calcium with neodymium in membranes and organelles of a cell, allowing it to maintain its shape and membrane integrity under extreme conditions, such as low pressure. Furthermore, phosphate exchange is blocked as a result of non-dissolvable neodymium salts formation, which “discharged” the cell. We further showed that REEbernation is characterized by an immediate cessation of transcriptional activity in observed cells, providing an intriguing opportunity to study a snapshot of gene expression at a given time point. Finally, we found that the REEbernation state is reversible, and we could restore the metabolism and proliferation capacity of the cells. The REEbernation, in addition to being an attractive model to further investigate the basic mechanisms of cell metabolism control, also provides a new method to reversibly place a cell into “on-hold” mode, opening opportunities to develop protocols for biological samples fixation with a minimum effect on the omics profile for biomedical needs.