Cargando…
Encapsulation of Phenolic Compounds from a Grape Cane Pilot-Plant Extract in Hydroxypropyl Beta-Cyclodextrin and Maltodextrin by Spray Drying
Grape canes, the main byproducts of the viticulture industry, contain high-value bioactive phenolic compounds, whose application is limited by their instability and poorly solubility in water. Encapsulation in cyclodextrins allows these drawbacks to be overcome. In this work, a grape cane pilot-plan...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8301162/ https://www.ncbi.nlm.nih.gov/pubmed/34356363 http://dx.doi.org/10.3390/antiox10071130 |
_version_ | 1783726608904880128 |
---|---|
author | Escobar-Avello, Danilo Avendaño-Godoy, Javier Santos, Jorge Lozano-Castellón, Julián Mardones, Claudia von Baer, Dietrich Luengo, Javiana Lamuela-Raventós, Rosa M. Vallverdú-Queralt, Anna Gómez-Gaete, Carolina |
author_facet | Escobar-Avello, Danilo Avendaño-Godoy, Javier Santos, Jorge Lozano-Castellón, Julián Mardones, Claudia von Baer, Dietrich Luengo, Javiana Lamuela-Raventós, Rosa M. Vallverdú-Queralt, Anna Gómez-Gaete, Carolina |
author_sort | Escobar-Avello, Danilo |
collection | PubMed |
description | Grape canes, the main byproducts of the viticulture industry, contain high-value bioactive phenolic compounds, whose application is limited by their instability and poorly solubility in water. Encapsulation in cyclodextrins allows these drawbacks to be overcome. In this work, a grape cane pilot-plant extract (GC(PPE)) was encapsulated in hydroxypropyl beta-cyclodextrin (HP-β-CD) by a spray-drying technique and the formation of an inclusion complex was confirmed by microscopy and infrared spectroscopy. The phenolic profile of the complex was analyzed by LC-ESI-LTQ-Orbitrap-MS and the encapsulation efficiency of the phenolic compounds was determined. A total of 42 compounds were identified, including stilbenes, flavonoids, and phenolic acids, and a complex of (epi)catechin with β-CD was detected, confirming the interaction between polyphenols and cyclodextrin. The encapsulation efficiency for the total extract was 80.5 ± 1.1%, with restrytisol showing the highest value (97.0 ± 0.6%) and (E)-resveratrol (32.7 ± 2.8%) the lowest value. The antioxidant capacity of the inclusion complex, determined by ORAC-FL, was 5300 ± 472 µmol TE/g DW, which was similar to the value obtained for the unencapsulated extract. This formulation might be used to improve the stability, solubility, and bioavailability of phenolic compounds of the GC(PPE) for water-soluble food and pharmaceutical applications. |
format | Online Article Text |
id | pubmed-8301162 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-83011622021-07-24 Encapsulation of Phenolic Compounds from a Grape Cane Pilot-Plant Extract in Hydroxypropyl Beta-Cyclodextrin and Maltodextrin by Spray Drying Escobar-Avello, Danilo Avendaño-Godoy, Javier Santos, Jorge Lozano-Castellón, Julián Mardones, Claudia von Baer, Dietrich Luengo, Javiana Lamuela-Raventós, Rosa M. Vallverdú-Queralt, Anna Gómez-Gaete, Carolina Antioxidants (Basel) Article Grape canes, the main byproducts of the viticulture industry, contain high-value bioactive phenolic compounds, whose application is limited by their instability and poorly solubility in water. Encapsulation in cyclodextrins allows these drawbacks to be overcome. In this work, a grape cane pilot-plant extract (GC(PPE)) was encapsulated in hydroxypropyl beta-cyclodextrin (HP-β-CD) by a spray-drying technique and the formation of an inclusion complex was confirmed by microscopy and infrared spectroscopy. The phenolic profile of the complex was analyzed by LC-ESI-LTQ-Orbitrap-MS and the encapsulation efficiency of the phenolic compounds was determined. A total of 42 compounds were identified, including stilbenes, flavonoids, and phenolic acids, and a complex of (epi)catechin with β-CD was detected, confirming the interaction between polyphenols and cyclodextrin. The encapsulation efficiency for the total extract was 80.5 ± 1.1%, with restrytisol showing the highest value (97.0 ± 0.6%) and (E)-resveratrol (32.7 ± 2.8%) the lowest value. The antioxidant capacity of the inclusion complex, determined by ORAC-FL, was 5300 ± 472 µmol TE/g DW, which was similar to the value obtained for the unencapsulated extract. This formulation might be used to improve the stability, solubility, and bioavailability of phenolic compounds of the GC(PPE) for water-soluble food and pharmaceutical applications. MDPI 2021-07-15 /pmc/articles/PMC8301162/ /pubmed/34356363 http://dx.doi.org/10.3390/antiox10071130 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Escobar-Avello, Danilo Avendaño-Godoy, Javier Santos, Jorge Lozano-Castellón, Julián Mardones, Claudia von Baer, Dietrich Luengo, Javiana Lamuela-Raventós, Rosa M. Vallverdú-Queralt, Anna Gómez-Gaete, Carolina Encapsulation of Phenolic Compounds from a Grape Cane Pilot-Plant Extract in Hydroxypropyl Beta-Cyclodextrin and Maltodextrin by Spray Drying |
title | Encapsulation of Phenolic Compounds from a Grape Cane Pilot-Plant Extract in Hydroxypropyl Beta-Cyclodextrin and Maltodextrin by Spray Drying |
title_full | Encapsulation of Phenolic Compounds from a Grape Cane Pilot-Plant Extract in Hydroxypropyl Beta-Cyclodextrin and Maltodextrin by Spray Drying |
title_fullStr | Encapsulation of Phenolic Compounds from a Grape Cane Pilot-Plant Extract in Hydroxypropyl Beta-Cyclodextrin and Maltodextrin by Spray Drying |
title_full_unstemmed | Encapsulation of Phenolic Compounds from a Grape Cane Pilot-Plant Extract in Hydroxypropyl Beta-Cyclodextrin and Maltodextrin by Spray Drying |
title_short | Encapsulation of Phenolic Compounds from a Grape Cane Pilot-Plant Extract in Hydroxypropyl Beta-Cyclodextrin and Maltodextrin by Spray Drying |
title_sort | encapsulation of phenolic compounds from a grape cane pilot-plant extract in hydroxypropyl beta-cyclodextrin and maltodextrin by spray drying |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8301162/ https://www.ncbi.nlm.nih.gov/pubmed/34356363 http://dx.doi.org/10.3390/antiox10071130 |
work_keys_str_mv | AT escobaravellodanilo encapsulationofphenoliccompoundsfromagrapecanepilotplantextractinhydroxypropylbetacyclodextrinandmaltodextrinbyspraydrying AT avendanogodoyjavier encapsulationofphenoliccompoundsfromagrapecanepilotplantextractinhydroxypropylbetacyclodextrinandmaltodextrinbyspraydrying AT santosjorge encapsulationofphenoliccompoundsfromagrapecanepilotplantextractinhydroxypropylbetacyclodextrinandmaltodextrinbyspraydrying AT lozanocastellonjulian encapsulationofphenoliccompoundsfromagrapecanepilotplantextractinhydroxypropylbetacyclodextrinandmaltodextrinbyspraydrying AT mardonesclaudia encapsulationofphenoliccompoundsfromagrapecanepilotplantextractinhydroxypropylbetacyclodextrinandmaltodextrinbyspraydrying AT vonbaerdietrich encapsulationofphenoliccompoundsfromagrapecanepilotplantextractinhydroxypropylbetacyclodextrinandmaltodextrinbyspraydrying AT luengojaviana encapsulationofphenoliccompoundsfromagrapecanepilotplantextractinhydroxypropylbetacyclodextrinandmaltodextrinbyspraydrying AT lamuelaraventosrosam encapsulationofphenoliccompoundsfromagrapecanepilotplantextractinhydroxypropylbetacyclodextrinandmaltodextrinbyspraydrying AT vallverduqueraltanna encapsulationofphenoliccompoundsfromagrapecanepilotplantextractinhydroxypropylbetacyclodextrinandmaltodextrinbyspraydrying AT gomezgaetecarolina encapsulationofphenoliccompoundsfromagrapecanepilotplantextractinhydroxypropylbetacyclodextrinandmaltodextrinbyspraydrying |