Cargando…
A General Framework to Learn Tertiary Structure for Protein Sequence Characterization
During the past five years, deep-learning algorithms have enabled ground-breaking progress towards the prediction of tertiary structure from a protein sequence. Very recently, we developed SAdLSA, a new computational algorithm for protein sequence comparison via deep-learning of protein structural a...
Autores principales: | Gao, Mu, Skolnick, Jeffrey |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8301223/ https://www.ncbi.nlm.nih.gov/pubmed/34308415 http://dx.doi.org/10.3389/fbinf.2021.689960 |
Ejemplares similares
-
Navigating the amino acid sequence space between functional proteins using a deep learning framework
por: Bitard-Feildel, Tristan
Publicado: (2021) -
Genome-scale characterization of RNA tertiary structures and their functional impact by RNA solvent accessibility prediction
por: Yang, Yuedong, et al.
Publicado: (2017) -
DeephageTP: a convolutional neural network framework for identifying phage-specific proteins from metagenomic sequencing data
por: Chu, Yunmeng, et al.
Publicado: (2022) -
SaPt-CNN-LSTM-AR-EA: a hybrid ensemble learning framework for time series-based multivariate DNA sequence prediction
por: Yan, Wu, et al.
Publicado: (2023) -
IdentPMP: identification of moonlighting proteins in plants using sequence-based learning models
por: Liu, Xinyi, et al.
Publicado: (2021)