Cargando…
Roles of XBP1s in Transcriptional Regulation of Target Genes
The spliced form of X-box binding protein 1 (XBP1s) is an active transcription factor that plays a vital role in the unfolded protein response (UPR). Under endoplasmic reticulum (ER) stress, unspliced Xbp1 mRNA is cleaved by the activated stress sensor IRE1α and converted to the mature form encoding...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8301375/ https://www.ncbi.nlm.nih.gov/pubmed/34356855 http://dx.doi.org/10.3390/biomedicines9070791 |
_version_ | 1783726654308220928 |
---|---|
author | Park, Sung-Min Kang, Tae-Il So, Jae-Seon |
author_facet | Park, Sung-Min Kang, Tae-Il So, Jae-Seon |
author_sort | Park, Sung-Min |
collection | PubMed |
description | The spliced form of X-box binding protein 1 (XBP1s) is an active transcription factor that plays a vital role in the unfolded protein response (UPR). Under endoplasmic reticulum (ER) stress, unspliced Xbp1 mRNA is cleaved by the activated stress sensor IRE1α and converted to the mature form encoding spliced XBP1 (XBP1s). Translated XBP1s migrates to the nucleus and regulates the transcriptional programs of UPR target genes encoding ER molecular chaperones, folding enzymes, and ER-associated protein degradation (ERAD) components to decrease ER stress. Moreover, studies have shown that XBP1s regulates the transcription of diverse genes that are involved in lipid and glucose metabolism and immune responses. Therefore, XBP1s has been considered an important therapeutic target in studying various diseases, including cancer, diabetes, and autoimmune and inflammatory diseases. XBP1s is involved in several unique mechanisms to regulate the transcription of different target genes by interacting with other proteins to modulate their activity. Although recent studies discovered numerous target genes of XBP1s via genome-wide analyses, how XBP1s regulates their transcription remains unclear. This review discusses the roles of XBP1s in target genes transcriptional regulation. More in-depth knowledge of XBP1s target genes and transcriptional regulatory mechanisms in the future will help develop new therapeutic targets for each disease. |
format | Online Article Text |
id | pubmed-8301375 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-83013752021-07-24 Roles of XBP1s in Transcriptional Regulation of Target Genes Park, Sung-Min Kang, Tae-Il So, Jae-Seon Biomedicines Review The spliced form of X-box binding protein 1 (XBP1s) is an active transcription factor that plays a vital role in the unfolded protein response (UPR). Under endoplasmic reticulum (ER) stress, unspliced Xbp1 mRNA is cleaved by the activated stress sensor IRE1α and converted to the mature form encoding spliced XBP1 (XBP1s). Translated XBP1s migrates to the nucleus and regulates the transcriptional programs of UPR target genes encoding ER molecular chaperones, folding enzymes, and ER-associated protein degradation (ERAD) components to decrease ER stress. Moreover, studies have shown that XBP1s regulates the transcription of diverse genes that are involved in lipid and glucose metabolism and immune responses. Therefore, XBP1s has been considered an important therapeutic target in studying various diseases, including cancer, diabetes, and autoimmune and inflammatory diseases. XBP1s is involved in several unique mechanisms to regulate the transcription of different target genes by interacting with other proteins to modulate their activity. Although recent studies discovered numerous target genes of XBP1s via genome-wide analyses, how XBP1s regulates their transcription remains unclear. This review discusses the roles of XBP1s in target genes transcriptional regulation. More in-depth knowledge of XBP1s target genes and transcriptional regulatory mechanisms in the future will help develop new therapeutic targets for each disease. MDPI 2021-07-08 /pmc/articles/PMC8301375/ /pubmed/34356855 http://dx.doi.org/10.3390/biomedicines9070791 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Park, Sung-Min Kang, Tae-Il So, Jae-Seon Roles of XBP1s in Transcriptional Regulation of Target Genes |
title | Roles of XBP1s in Transcriptional Regulation of Target Genes |
title_full | Roles of XBP1s in Transcriptional Regulation of Target Genes |
title_fullStr | Roles of XBP1s in Transcriptional Regulation of Target Genes |
title_full_unstemmed | Roles of XBP1s in Transcriptional Regulation of Target Genes |
title_short | Roles of XBP1s in Transcriptional Regulation of Target Genes |
title_sort | roles of xbp1s in transcriptional regulation of target genes |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8301375/ https://www.ncbi.nlm.nih.gov/pubmed/34356855 http://dx.doi.org/10.3390/biomedicines9070791 |
work_keys_str_mv | AT parksungmin rolesofxbp1sintranscriptionalregulationoftargetgenes AT kangtaeil rolesofxbp1sintranscriptionalregulationoftargetgenes AT sojaeseon rolesofxbp1sintranscriptionalregulationoftargetgenes |