Cargando…
Leveraging high-throughput screening data, deep neural networks, and conditional generative adversarial networks to advance predictive toxicology
There are currently 85,000 chemicals registered with the Environmental Protection Agency (EPA) under the Toxic Substances Control Act, but only a small fraction have measured toxicological data. To address this gap, high-throughput screening (HTS) and computational methods are vital. As part of one...
Autores principales: | Green, Adrian J., Mohlenkamp, Martin J., Das, Jhuma, Chaudhari, Meenal, Truong, Lisa, Tanguay, Robyn L., Reif, David M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8301607/ https://www.ncbi.nlm.nih.gov/pubmed/34214078 http://dx.doi.org/10.1371/journal.pcbi.1009135 |
Ejemplares similares
-
Leveraging a High-Throughput Screening Method to Identify Mechanisms of Individual Susceptibility Differences in a Genetically Diverse Zebrafish Model
por: Wallis, Dylan J., et al.
Publicado: (2022) -
Disrupting adversarial transferability in deep neural networks
por: Wiedeman, Christopher, et al.
Publicado: (2022) -
Tea Chrysanthemum Detection by Leveraging Generative Adversarial Networks and Edge Computing
por: Qi, Chao, et al.
Publicado: (2022) -
Concurrent Evaluation of Mortality and Behavioral Responses: A Fast and Efficient Testing Approach for High-Throughput Chemical Hazard Identification
por: Thunga, Preethi, et al.
Publicado: (2021) -
Advancing Toxicology Research Using In Vivo High Throughput Toxicology with Small Fish Models
por: Planchart, Antonio, et al.
Publicado: (2016)