Cargando…
Implementation of Machine Learning Software on the Radiology Worklist Decreases Scan View Delay for the Detection of Intracranial Hemorrhage on CT
Background and Purpose: Prompt identification of acute intracranial hemorrhage on CT is important. The goal of this study was to assess the impact of artificial intelligence software for prioritizing positive cases. Materials and Methods: Cases analyzed by Aidoc (Tel Aviv, Israel) software for triag...
Autor principal: | Ginat, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8301803/ https://www.ncbi.nlm.nih.gov/pubmed/34201775 http://dx.doi.org/10.3390/brainsci11070832 |
Ejemplares similares
-
Decreased Hospital Length of Stay for ICH and PE after Adoption of an Artificial Intelligence-Augmented Radiological Worklist Triage System
por: Petry, Michael, et al.
Publicado: (2022) -
Text Analysis of Radiology Reports with Signs of Intracranial Hemorrhage on Brain CT Scans Using the Decision Tree Algorithm
por: Khoruzhaya, А.N., et al.
Publicado: (2022) -
Smart chest X-ray worklist prioritization using artificial intelligence: a clinical workflow simulation
por: Baltruschat, Ivo, et al.
Publicado: (2020) -
Benefits of Low-Dose CT Scan of Head for Patients With Intracranial Hemorrhage
por: Wu, Dan, et al.
Publicado: (2020) -
Evaluation of grouped capsule network for intracranial hemorrhage segmentation in CT scans
por: Wang, Lingying, et al.
Publicado: (2023)