Cargando…

Suppression of Inflammation-Associated Kidney Damage Post-Transplant Using the New PrC-210 Free Radical Scavenger in Rats

Allograft kidney transplantation, which triggers host cellular- and antibody-mediated rejection of the kidney, is a major contributor to kidney damage during transplant. Here, we asked whether PrC-210 would suppress damage seen in allograft kidney transplant. Brown Norway (BN) rat kidneys were perfu...

Descripción completa

Detalles Bibliográficos
Autores principales: Goesch, Torsten R., Wilson, Nancy A., Zeng, Weifeng, Verhoven, Bret M., Zhong, Weixiong, Coumbe Gitter, Maya M., Fahl, William E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8301928/
https://www.ncbi.nlm.nih.gov/pubmed/34356678
http://dx.doi.org/10.3390/biom11071054
Descripción
Sumario:Allograft kidney transplantation, which triggers host cellular- and antibody-mediated rejection of the kidney, is a major contributor to kidney damage during transplant. Here, we asked whether PrC-210 would suppress damage seen in allograft kidney transplant. Brown Norway (BN) rat kidneys were perfused in situ (UW Solution) with or without added 30 mM PrC-210, and then immediately transplanted into Lewis (LEW) rats. 20 h later, the transplanted BN kidneys and LEW rat plasma were analyzed. Kidney histology, and kidney/serum levels of several inflammation-associated cytokines, were measured to assess mismatch-related kidney pathology, and PrC-210 protective efficacy. Twenty hours after the allograft transplants: (i) significant histologic kidney tubule damage and mononuclear inflammatory cell infiltration were seen in allograft kidneys; (ii) kidney function metrics (creatinine and BUN) were significantly elevated; (iii) significant changes in key cytokines, i.e., TIMP-1, TNF-alpha and MIP-3A/CCL20, and kidney activated caspase levels were seen. In PrC-210-treated kidneys and recipient rats, (i) kidney histologic damage (Banff Scores) and mononuclear infiltration were reduced to untreated background levels; (ii) creatinine and BUN were significantly reduced; and (iii) activated caspase and cytokine changes were significantly reduced, some to background. In conclusion, the results suggest that PrC-210 could provide broadly applicable organ protection for many allograft transplantation conditions; it could protect transplanted kidneys during and after all stages of the transplantation process—from organ donation, through transportation, re-implantation and the post-operative inflammation—to minimize acute and chronic rejection.