Cargando…
Quantitative disease risk scores from EHR with applications to clinical risk stratification and genetic studies
Labeling clinical data from electronic health records (EHR) in health systems requires extensive knowledge of human expert, and painstaking review by clinicians. Furthermore, existing phenotyping algorithms are not uniformly applied across large datasets and can suffer from inconsistencies in case d...
Autores principales: | Xu, Danqing, Wang, Chen, Khan, Atlas, Shang, Ning, He, Zihuai, Gordon, Adam, Kullo, Iftikhar J., Murphy, Shawn, Ni, Yizhao, Wei, Wei-Qi, Gharavi, Ali, Kiryluk, Krzysztof, Weng, Chunhua, Ionita-Laza, Iuliana |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8302667/ https://www.ncbi.nlm.nih.gov/pubmed/34302027 http://dx.doi.org/10.1038/s41746-021-00488-3 |
Ejemplares similares
-
BIGKnock: fine-mapping gene-based associations via knockoff analysis of biobank-scale data
por: Ma, Shiyang, et al.
Publicado: (2023) -
Polygenic risk affects the penetrance of monogenic kidney disease
por: Khan, Atlas, et al.
Publicado: (2023) -
A genome-wide scan statistic framework for whole-genome sequence data analysis
por: He, Zihuai, et al.
Publicado: (2019) -
A semi-supervised approach for predicting cell-type specific functional consequences of non-coding variation using MPRAs
por: He, Zihuai, et al.
Publicado: (2018) -
The Data Gap in the EHR for Clinical Research Eligibility Screening
por: Butler, Alex, et al.
Publicado: (2018)