Cargando…

A quantum material spintronic resonator

In a spintronic resonator a radio-frequency signal excites spin dynamics that can be detected by the spin-diode effect. Such resonators are generally based on ferromagnetic metals and their responses to spin torques. New and richer functionalities can potentially be achieved with quantum materials,...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Jun-Wen, Chen, Yizhang, Vargas, Nicolás M., Salev, Pavel, Lapa, Pavel N., Trastoy, Juan, Grollier, Julie, Schuller, Ivan K., Kent, Andrew D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8302732/
https://www.ncbi.nlm.nih.gov/pubmed/34301961
http://dx.doi.org/10.1038/s41598-021-93404-4
_version_ 1783726932792180736
author Xu, Jun-Wen
Chen, Yizhang
Vargas, Nicolás M.
Salev, Pavel
Lapa, Pavel N.
Trastoy, Juan
Grollier, Julie
Schuller, Ivan K.
Kent, Andrew D.
author_facet Xu, Jun-Wen
Chen, Yizhang
Vargas, Nicolás M.
Salev, Pavel
Lapa, Pavel N.
Trastoy, Juan
Grollier, Julie
Schuller, Ivan K.
Kent, Andrew D.
author_sort Xu, Jun-Wen
collection PubMed
description In a spintronic resonator a radio-frequency signal excites spin dynamics that can be detected by the spin-diode effect. Such resonators are generally based on ferromagnetic metals and their responses to spin torques. New and richer functionalities can potentially be achieved with quantum materials, specifically with transition metal oxides that have phase transitions that can endow a spintronic resonator with hysteresis and memory. Here we present the spin torque ferromagnetic resonance characteristics of a hybrid metal-insulator-transition oxide/ ferromagnetic metal nanoconstriction. Our samples incorporate [Formula: see text] , with Ni, Permalloy ([Formula: see text] ) and Pt layers patterned into a nanoconstriction geometry. The first order phase transition in [Formula: see text] is shown to lead to systematic changes in the resonance response and hysteretic current control of the ferromagnetic resonance frequency. Further, the output signal can be systematically varied by locally changing the state of the [Formula: see text] with a dc current. These results demonstrate new spintronic resonator functionalities of interest for neuromorphic computing.
format Online
Article
Text
id pubmed-8302732
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-83027322021-07-27 A quantum material spintronic resonator Xu, Jun-Wen Chen, Yizhang Vargas, Nicolás M. Salev, Pavel Lapa, Pavel N. Trastoy, Juan Grollier, Julie Schuller, Ivan K. Kent, Andrew D. Sci Rep Article In a spintronic resonator a radio-frequency signal excites spin dynamics that can be detected by the spin-diode effect. Such resonators are generally based on ferromagnetic metals and their responses to spin torques. New and richer functionalities can potentially be achieved with quantum materials, specifically with transition metal oxides that have phase transitions that can endow a spintronic resonator with hysteresis and memory. Here we present the spin torque ferromagnetic resonance characteristics of a hybrid metal-insulator-transition oxide/ ferromagnetic metal nanoconstriction. Our samples incorporate [Formula: see text] , with Ni, Permalloy ([Formula: see text] ) and Pt layers patterned into a nanoconstriction geometry. The first order phase transition in [Formula: see text] is shown to lead to systematic changes in the resonance response and hysteretic current control of the ferromagnetic resonance frequency. Further, the output signal can be systematically varied by locally changing the state of the [Formula: see text] with a dc current. These results demonstrate new spintronic resonator functionalities of interest for neuromorphic computing. Nature Publishing Group UK 2021-07-23 /pmc/articles/PMC8302732/ /pubmed/34301961 http://dx.doi.org/10.1038/s41598-021-93404-4 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Xu, Jun-Wen
Chen, Yizhang
Vargas, Nicolás M.
Salev, Pavel
Lapa, Pavel N.
Trastoy, Juan
Grollier, Julie
Schuller, Ivan K.
Kent, Andrew D.
A quantum material spintronic resonator
title A quantum material spintronic resonator
title_full A quantum material spintronic resonator
title_fullStr A quantum material spintronic resonator
title_full_unstemmed A quantum material spintronic resonator
title_short A quantum material spintronic resonator
title_sort quantum material spintronic resonator
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8302732/
https://www.ncbi.nlm.nih.gov/pubmed/34301961
http://dx.doi.org/10.1038/s41598-021-93404-4
work_keys_str_mv AT xujunwen aquantummaterialspintronicresonator
AT chenyizhang aquantummaterialspintronicresonator
AT vargasnicolasm aquantummaterialspintronicresonator
AT salevpavel aquantummaterialspintronicresonator
AT lapapaveln aquantummaterialspintronicresonator
AT trastoyjuan aquantummaterialspintronicresonator
AT grollierjulie aquantummaterialspintronicresonator
AT schullerivank aquantummaterialspintronicresonator
AT kentandrewd aquantummaterialspintronicresonator
AT xujunwen quantummaterialspintronicresonator
AT chenyizhang quantummaterialspintronicresonator
AT vargasnicolasm quantummaterialspintronicresonator
AT salevpavel quantummaterialspintronicresonator
AT lapapaveln quantummaterialspintronicresonator
AT trastoyjuan quantummaterialspintronicresonator
AT grollierjulie quantummaterialspintronicresonator
AT schullerivank quantummaterialspintronicresonator
AT kentandrewd quantummaterialspintronicresonator