Cargando…
Automated machine learning optimizes and accelerates predictive modeling from COVID-19 high throughput datasets
COVID-19 outbreak brings intense pressure on healthcare systems, with an urgent demand for effective diagnostic, prognostic and therapeutic procedures. Here, we employed Automated Machine Learning (AutoML) to analyze three publicly available high throughput COVID-19 datasets, including proteomic, me...
Autores principales: | Papoutsoglou, Georgios, Karaglani, Makrina, Lagani, Vincenzo, Thomson, Naomi, Røe, Oluf Dimitri, Tsamardinos, Ioannis, Chatzaki, Ekaterini |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8302755/ https://www.ncbi.nlm.nih.gov/pubmed/34302024 http://dx.doi.org/10.1038/s41598-021-94501-0 |
Ejemplares similares
-
Accurate Blood-Based Diagnostic Biosignatures for Alzheimer’s Disease via Automated Machine Learning
por: Karaglani, Makrina, et al.
Publicado: (2020) -
Deciphering the Methylation Landscape in Breast Cancer: Diagnostic and Prognostic Biosignatures through Automated Machine Learning
por: Panagopoulou, Maria, et al.
Publicado: (2021) -
Just Add Data: automated predictive modeling for knowledge discovery and feature selection
por: Tsamardinos, Ioannis, et al.
Publicado: (2022) -
Liquid Biopsy in Type 2 Diabetes Mellitus Management: Building Specific Biosignatures via Machine Learning
por: Karaglani, Makrina, et al.
Publicado: (2022) -
Tissue-Specific Methylation Biosignatures for Monitoring Diseases: An In Silico Approach
por: Karaglani, Makrina, et al.
Publicado: (2022)