Cargando…
Application of deep learning to identify COVID-19 infection in posteroanterior chest X-rays
INTRODUCTION: The objective of this study was to assess seven configurations of six convolutional deep neural network architectures for classification of chest X-rays (CXRs) as COVID-19 positive or negative. METHODS: The primary dataset consisted of 294 COVID-19 positive and 294 COVID-19 negative CX...
Autores principales: | Maharjan, Jenish, Calvert, Jacob, Pellegrini, Emily, Green-Saxena, Abigail, Hoffman, Jana, McCoy, Andrea, Mao, Qingqing, Das, Ritankar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Authors. Published by Elsevier Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8302887/ https://www.ncbi.nlm.nih.gov/pubmed/34425544 http://dx.doi.org/10.1016/j.clinimag.2021.07.004 |
Ejemplares similares
-
Tuberculosis Diagnostics and Localization in Chest X-Rays via Deep Learning Models
por: Guo, Ruihua, et al.
Publicado: (2020) -
Unsupervised domain adaptation for the detection of cardiomegaly in cross-domain chest X-ray images
por: Thiam, Patrick, et al.
Publicado: (2023) -
AI-driven deep CNN approach for multi-label pathology classification using chest X-Rays
por: Albahli, Saleh, et al.
Publicado: (2021) -
Predicting pulmonary embolism among hospitalized patients with machine learning algorithms
por: Ryan, Logan, et al.
Publicado: (2022) -
TB-Net: A Tailored, Self-Attention Deep Convolutional Neural Network Design for Detection of Tuberculosis Cases From Chest X-Ray Images
por: Wong, Alexander, et al.
Publicado: (2022)