Cargando…

Analysis of Immune Associated Co-Expression Networks Reveals Immune-Related Long Non-Coding RNAs during MI in the Presence and Absence of HDC

Myocardial infarction (MI) is one of the most common cardiovascular diseases. Although previous studies have shown that histidine decarboxylase (HDC), a histamine-synthesizing enzyme, is involved in the stress response and heart remodeling after MI, the mechanism underlying it remains unclear. In th...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Zhiwei, Ding, Suling, Yang, Xiangdong, Ge, Junbo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8303379/
https://www.ncbi.nlm.nih.gov/pubmed/34299019
http://dx.doi.org/10.3390/ijms22147401
_version_ 1783727072740376576
author Zhang, Zhiwei
Ding, Suling
Yang, Xiangdong
Ge, Junbo
author_facet Zhang, Zhiwei
Ding, Suling
Yang, Xiangdong
Ge, Junbo
author_sort Zhang, Zhiwei
collection PubMed
description Myocardial infarction (MI) is one of the most common cardiovascular diseases. Although previous studies have shown that histidine decarboxylase (HDC), a histamine-synthesizing enzyme, is involved in the stress response and heart remodeling after MI, the mechanism underlying it remains unclear. In this study, using Hdc-deficient mice (Hdc(−/−) mice), we established an acute myocardial infarction mouse model to explore the potential roles of Hdc/histamine in cardiac immune responses. Comprehensive analysis was performed on the transcriptomes of infarcted hearts. Differentially expressed gene (DEG) analysis identified 2126 DEGs in Hdc-deficient groups and 1013 in histamine-treated groups. Immune related pathways were enriched in Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Then we used the ssGSEA algorithm to evaluate 22 kinds of infiltrated immunocytes, which indicated that myeloid cells and T memory/follicular helper cells were tightly regulated by Hdc/histamine post MI. The relationships of lncRNAs and the Gene Ontology (GO) functions of protein-coding RNAs and immunocytes were dissected in networks to unveil immune-associated lncRNAs and their roles in immune modulation after MI. Finally, we screened out and verified four lncRNAs, which were closely implicated in tuning the immune responses after MI, including ENSMUST00000191157, ENSMUST00000180693 (PTPRE-AS1), and ENSMUST-00000182785. Our study highlighted the HDC-regulated myeloid cells as a driving force contributing to the government of transmission from innate immunocytes to adaptive immunocytes in the progression of the injury response after MI. We identified the potential role of the Hdc/histamine-lncRNAs network in regulating cardiac immune responses, which may provide novel promising therapeutic targets for further promoting the treatment of ischemic heart disease.
format Online
Article
Text
id pubmed-8303379
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-83033792021-07-25 Analysis of Immune Associated Co-Expression Networks Reveals Immune-Related Long Non-Coding RNAs during MI in the Presence and Absence of HDC Zhang, Zhiwei Ding, Suling Yang, Xiangdong Ge, Junbo Int J Mol Sci Article Myocardial infarction (MI) is one of the most common cardiovascular diseases. Although previous studies have shown that histidine decarboxylase (HDC), a histamine-synthesizing enzyme, is involved in the stress response and heart remodeling after MI, the mechanism underlying it remains unclear. In this study, using Hdc-deficient mice (Hdc(−/−) mice), we established an acute myocardial infarction mouse model to explore the potential roles of Hdc/histamine in cardiac immune responses. Comprehensive analysis was performed on the transcriptomes of infarcted hearts. Differentially expressed gene (DEG) analysis identified 2126 DEGs in Hdc-deficient groups and 1013 in histamine-treated groups. Immune related pathways were enriched in Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Then we used the ssGSEA algorithm to evaluate 22 kinds of infiltrated immunocytes, which indicated that myeloid cells and T memory/follicular helper cells were tightly regulated by Hdc/histamine post MI. The relationships of lncRNAs and the Gene Ontology (GO) functions of protein-coding RNAs and immunocytes were dissected in networks to unveil immune-associated lncRNAs and their roles in immune modulation after MI. Finally, we screened out and verified four lncRNAs, which were closely implicated in tuning the immune responses after MI, including ENSMUST00000191157, ENSMUST00000180693 (PTPRE-AS1), and ENSMUST-00000182785. Our study highlighted the HDC-regulated myeloid cells as a driving force contributing to the government of transmission from innate immunocytes to adaptive immunocytes in the progression of the injury response after MI. We identified the potential role of the Hdc/histamine-lncRNAs network in regulating cardiac immune responses, which may provide novel promising therapeutic targets for further promoting the treatment of ischemic heart disease. MDPI 2021-07-09 /pmc/articles/PMC8303379/ /pubmed/34299019 http://dx.doi.org/10.3390/ijms22147401 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Zhang, Zhiwei
Ding, Suling
Yang, Xiangdong
Ge, Junbo
Analysis of Immune Associated Co-Expression Networks Reveals Immune-Related Long Non-Coding RNAs during MI in the Presence and Absence of HDC
title Analysis of Immune Associated Co-Expression Networks Reveals Immune-Related Long Non-Coding RNAs during MI in the Presence and Absence of HDC
title_full Analysis of Immune Associated Co-Expression Networks Reveals Immune-Related Long Non-Coding RNAs during MI in the Presence and Absence of HDC
title_fullStr Analysis of Immune Associated Co-Expression Networks Reveals Immune-Related Long Non-Coding RNAs during MI in the Presence and Absence of HDC
title_full_unstemmed Analysis of Immune Associated Co-Expression Networks Reveals Immune-Related Long Non-Coding RNAs during MI in the Presence and Absence of HDC
title_short Analysis of Immune Associated Co-Expression Networks Reveals Immune-Related Long Non-Coding RNAs during MI in the Presence and Absence of HDC
title_sort analysis of immune associated co-expression networks reveals immune-related long non-coding rnas during mi in the presence and absence of hdc
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8303379/
https://www.ncbi.nlm.nih.gov/pubmed/34299019
http://dx.doi.org/10.3390/ijms22147401
work_keys_str_mv AT zhangzhiwei analysisofimmuneassociatedcoexpressionnetworksrevealsimmunerelatedlongnoncodingrnasduringmiinthepresenceandabsenceofhdc
AT dingsuling analysisofimmuneassociatedcoexpressionnetworksrevealsimmunerelatedlongnoncodingrnasduringmiinthepresenceandabsenceofhdc
AT yangxiangdong analysisofimmuneassociatedcoexpressionnetworksrevealsimmunerelatedlongnoncodingrnasduringmiinthepresenceandabsenceofhdc
AT gejunbo analysisofimmuneassociatedcoexpressionnetworksrevealsimmunerelatedlongnoncodingrnasduringmiinthepresenceandabsenceofhdc