Cargando…
Information Flows of Diverse Autoencoders
Deep learning methods have had outstanding performances in various fields. A fundamental query is why they are so effective. Information theory provides a potential answer by interpreting the learning process as the information transmission and compression of data. The information flows can be visua...
Autores principales: | Lee, Sungyeop, Jo, Junghyo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8303402/ https://www.ncbi.nlm.nih.gov/pubmed/34356403 http://dx.doi.org/10.3390/e23070862 |
Ejemplares similares
-
Probabilistic Autoencoder Using Fisher Information
por: Zacherl, Johannes, et al.
Publicado: (2021) -
An Information-Theoretic Perspective on Proper Quaternion Variational Autoencoders
por: Grassucci, Eleonora, et al.
Publicado: (2021) -
An AutoEncoder and LSTM-Based Traffic Flow Prediction Method
por: Wei, Wangyang, et al.
Publicado: (2019) -
Improving Variational Autoencoders for New Physics Detection at the LHC with Normalizing Flows
por: Jawahar, Pratik, et al.
Publicado: (2021) -
Improving Variational Autoencoders for New Physics Detection at the LHC With Normalizing Flows
por: Jawahar, Pratik, et al.
Publicado: (2022)