Cargando…
The Effects of Chemical Bonding at Subatomic Resolution: A Case Study on α-Boron
Similar to classical asphericity shifts, aspherical deformations of the electron density in the atomic core region can result in core asphericity shifts in refinements using a Hansen-Coppens multipolar model (HCM), especially when highly precise experimental datasets with resolutions far beyond sin(...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8303496/ https://www.ncbi.nlm.nih.gov/pubmed/34299544 http://dx.doi.org/10.3390/molecules26144270 |
_version_ | 1783727101656956928 |
---|---|
author | Fischer, Andreas Eickerling, Georg Scherer, Wolfgang |
author_facet | Fischer, Andreas Eickerling, Georg Scherer, Wolfgang |
author_sort | Fischer, Andreas |
collection | PubMed |
description | Similar to classical asphericity shifts, aspherical deformations of the electron density in the atomic core region can result in core asphericity shifts in refinements using a Hansen-Coppens multipolar model (HCM), especially when highly precise experimental datasets with resolutions far beyond sin(θ)/λ ≤ 1.0 Å(−1) are employed. These shifts are about two orders of magnitude smaller than their counterparts caused by valence shell deformations, and their underlying deformations are mainly of dipolar character for 1st row atoms. Here, we analyze the resolution dependence of core asphericity shifts in α-boron. Based on theoretical structure factors, an appropriate Extended HCM (EHCM) is developed, which is tested against experimental high-resolution (sin(θ)/λ ≤ 1.6 Å(−1)) single-crystal diffraction data. Bond length deviations due to core asphericity shifts of α-boron in the order of 4–6·10(−4) Å are small but significant at this resolution and can be effectively compensated by an EHCM, although the correlation of the additional model parameters with positional parameters prevented a free refinement of all core model parameters. For high quality, high resolution data, a proper treatment with an EHCM or other equivalent methods is therefore highly recommended. |
format | Online Article Text |
id | pubmed-8303496 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-83034962021-07-25 The Effects of Chemical Bonding at Subatomic Resolution: A Case Study on α-Boron Fischer, Andreas Eickerling, Georg Scherer, Wolfgang Molecules Article Similar to classical asphericity shifts, aspherical deformations of the electron density in the atomic core region can result in core asphericity shifts in refinements using a Hansen-Coppens multipolar model (HCM), especially when highly precise experimental datasets with resolutions far beyond sin(θ)/λ ≤ 1.0 Å(−1) are employed. These shifts are about two orders of magnitude smaller than their counterparts caused by valence shell deformations, and their underlying deformations are mainly of dipolar character for 1st row atoms. Here, we analyze the resolution dependence of core asphericity shifts in α-boron. Based on theoretical structure factors, an appropriate Extended HCM (EHCM) is developed, which is tested against experimental high-resolution (sin(θ)/λ ≤ 1.6 Å(−1)) single-crystal diffraction data. Bond length deviations due to core asphericity shifts of α-boron in the order of 4–6·10(−4) Å are small but significant at this resolution and can be effectively compensated by an EHCM, although the correlation of the additional model parameters with positional parameters prevented a free refinement of all core model parameters. For high quality, high resolution data, a proper treatment with an EHCM or other equivalent methods is therefore highly recommended. MDPI 2021-07-14 /pmc/articles/PMC8303496/ /pubmed/34299544 http://dx.doi.org/10.3390/molecules26144270 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Fischer, Andreas Eickerling, Georg Scherer, Wolfgang The Effects of Chemical Bonding at Subatomic Resolution: A Case Study on α-Boron |
title | The Effects of Chemical Bonding at Subatomic Resolution: A Case Study on α-Boron |
title_full | The Effects of Chemical Bonding at Subatomic Resolution: A Case Study on α-Boron |
title_fullStr | The Effects of Chemical Bonding at Subatomic Resolution: A Case Study on α-Boron |
title_full_unstemmed | The Effects of Chemical Bonding at Subatomic Resolution: A Case Study on α-Boron |
title_short | The Effects of Chemical Bonding at Subatomic Resolution: A Case Study on α-Boron |
title_sort | effects of chemical bonding at subatomic resolution: a case study on α-boron |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8303496/ https://www.ncbi.nlm.nih.gov/pubmed/34299544 http://dx.doi.org/10.3390/molecules26144270 |
work_keys_str_mv | AT fischerandreas theeffectsofchemicalbondingatsubatomicresolutionacasestudyonaboron AT eickerlinggeorg theeffectsofchemicalbondingatsubatomicresolutionacasestudyonaboron AT schererwolfgang theeffectsofchemicalbondingatsubatomicresolutionacasestudyonaboron AT fischerandreas effectsofchemicalbondingatsubatomicresolutionacasestudyonaboron AT eickerlinggeorg effectsofchemicalbondingatsubatomicresolutionacasestudyonaboron AT schererwolfgang effectsofchemicalbondingatsubatomicresolutionacasestudyonaboron |